Predictive Analytics Data Mining And Big Data

DOWNLOAD
Download Predictive Analytics Data Mining And Big Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive Analytics Data Mining And Big Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Predictive Analytics And Data Mining
DOWNLOAD
Author : Vijay Kotu
language : en
Publisher: Morgan Kaufmann
Release Date : 2014-11-27
Predictive Analytics And Data Mining written by Vijay Kotu and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-27 with Computers categories.
Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples
Predictive Analytics Data Mining And Big Data
DOWNLOAD
Author : S. Finlay
language : en
Publisher: Springer
Release Date : 2014-07-01
Predictive Analytics Data Mining And Big Data written by S. Finlay and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-01 with Business & Economics categories.
This in-depth guide provides managers with a solid understanding of data and data trends, the opportunities that it can offer to businesses, and the dangers of these technologies. Written in an accessible style, Steven Finlay provides a contextual roadmap for developing solutions that deliver benefits to organizations.
Predictive Analytics
DOWNLOAD
Author : Richard Hurley
language : en
Publisher:
Release Date : 2019-12-30
Predictive Analytics written by Richard Hurley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-30 with categories.
If you want to learn about predictive analytics without having to read a boring textbook, then keep reading... Companies are collecting more data from ever. With the ease of collecting all that data, all the different sources where you can receive the data, and the inexpensive storage, it makes sense to collect as much data as possible. But without a good analysis of that data, and without some time to really figure out what trends and insights are inside all of it, that data becomes worthless. This is where predictive analytics is going to come in handy. You will be able to actually take all of the data that you have been collecting and storing, and see what insights are in there to lead some of your business decisions in the future. This guidebook is going to look at predictive analytics, and some of the topics we will explore concerning this topic include: The basics of predictive analysis. How to predict events that are going to happen in the future with big data and data mining. How to predict events that are going to happen in the future with the help of data analysis and statistics. A look at machine learning and how this process can help make predictions. How to avoid prediction traps, avoid bias, and make the best decisions with this analysis. Some of the top reasons to implement this kind of analysis in your business. The steps you can take to create your own predictive analysis model. And much, much more! Working on predictive analytics is going to be one of the best ways that your business can use the data you have to look more deeply inside, and sort through the different predictions you can make. Click the "add to cart" button to start your learning!
Big Data Analytics Methods
DOWNLOAD
Author : Peter Ghavami
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2019-12-16
Big Data Analytics Methods written by Peter Ghavami and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Business & Economics categories.
Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.
Predictive Analytics For Dummies
DOWNLOAD
Author : Dr. Anasse Bari
language : en
Publisher: John Wiley & Sons
Release Date : 2014-03-24
Predictive Analytics For Dummies written by Dr. Anasse Bari and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-24 with Business & Economics categories.
Predict the future! This practical guide will help you use Big Data and technology to discover real-world insights, define projects, and help you create goals.
Big Data
DOWNLOAD
Author : Richard Hurley
language : en
Publisher:
Release Date : 2019-09-28
Big Data written by Richard Hurley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-28 with categories.
If you want to learn about big data, then keep reading... Do you want to understand what big data is all about, but you don't get all the hype? Are you intrigued by the idea of building a career around big data and data science, but you just don't understand it? If so, this book could be what you are looking for. In this book, we will explore the hot concept of big data and explain it for beginners like yourself. If you know nothing about big data now, you will come away with a good overview of the subject and how it integrates into the other hot technologies of the day widely adopted by business, such as artificial intelligence, predictive analytics, and machine learning. Even if you don't intend to get directly involved in big data, understanding it will be very important in the coming years. It is one of the most important phenomena to hit in many years. It took some time for technology to catch up so that big data could be analyzed and processed, but now we are in the midst of a data revolution. Big data powers many of the world's most powerful companies, including Facebook, Amazon, and Google, among others. In this book, you will learn: What is big data, and why is it important? The five V's behind big data How big data is already impacting your life, and where big data may be headed How big data and your everyday devices and appliances will come together in unexpected ways via the Internet of Things How companies and governments are using predictive analytics to get ahead of the competition or improve service How big data is used for fraud detection How big data can train intelligent computer systems The many ways large corporations are benefiting from big data and the tools that use it like machine learning, AI, and predictive analytics Upcoming trends in big data that are sure to have a large impact on your future Artificial intelligence, and how big data drives its development What machine learning is and how it is tied to big data The relationship between big data, data analytics, and business intelligence Insights into how big data impacts privacy issues The pros and cons regarding big data And much, much more! If you want to learn about this new, exciting, and rapidly developing technology, then download this book right now! You will not be baffled by big data any longer, and you will understand the behavior of large companies far better than you ever did before.
Predictive Analytics
DOWNLOAD
Author : Dursun Delen
language : en
Publisher: FT Press
Release Date : 2020-12-15
Predictive Analytics written by Dursun Delen and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-15 with Business & Economics categories.
Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-Making Using predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studies—including lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit. * Leverage knowledge extracted via data mining to make smarter decisions * Use standardized processes and workflows to make more trustworthy predictions * Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting) * Understand predictive algorithms drawn from traditional statistics and advanced machine learning * Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection
Predictive Analytics
DOWNLOAD
Author : Barry Keating
language : en
Publisher:
Release Date : 2016-03-01
Predictive Analytics written by Barry Keating and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-01 with categories.
Predictive Data Mining Models
DOWNLOAD
Author : David L. Olson
language : en
Publisher: Springer
Release Date : 2019-08-07
Predictive Data Mining Models written by David L. Olson and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-07 with Business & Economics categories.
This book provides an overview of predictive methods demonstrated by open source software modeling with Rattle (R’) and WEKA. Knowledge management involves application of human knowledge (epistemology) with the technological advances of our current society (computer systems) and big data, both in terms of collecting data and in analyzing it. We see three types of analytic tools. Descriptive analytics focus on reports of what has happened. Predictive analytics extend statistical and/or artificial intelligence to provide forecasting capability. It also includes classification modeling. Prescriptive analytics applies quantitative models to optimize systems, or at least to identify improved systems. Data mining includes descriptive and predictive modeling. Operations research includes all three. This book focuses on prescriptive analytics. The book seeks to provide simple explanations and demonstration of some descriptive tools. This second edition provides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic data types. Chapter 3 covers fundamentals time series modeling tools, and Chapter 4 provides demonstration of multiple regression modeling. Chapter 5 demonstrates regression tree modeling. Chapter 6 presents autoregressive/integrated/moving average models, as well as GARCH models. Chapter 7 covers the set of data mining tools used in classification, to include special variants support vector machines, random forests, and boosting. Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.
Data Mining For Business Analytics
DOWNLOAD
Author : Galit Shmueli
language : en
Publisher: John Wiley & Sons
Release Date : 2016-04-22
Data Mining For Business Analytics written by Galit Shmueli and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-22 with Mathematics categories.
An applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "...full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.