Predictive Hr Analytics Text Mining And Organizational Network Analysis With Excel

DOWNLOAD
Download Predictive Hr Analytics Text Mining And Organizational Network Analysis With Excel PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive Hr Analytics Text Mining And Organizational Network Analysis With Excel book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Predictive Hr Analytics Text Mining And Organizational Network Analysis With Excel
DOWNLOAD
Author : Dpg
language : en
Publisher: Independently Published
Release Date : 2019-06-30
Predictive Hr Analytics Text Mining And Organizational Network Analysis With Excel written by Dpg and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-30 with categories.
A lot of organizational data is often untapped unstructured data in the form of text & numbers. You don't need to spend months learning R programming & you don't need to buy expensive SPSS statistical software. This is the only book that teaches you how to use Microsoft Excel for Predictive HR Analytics, Text Mining & Organizational Network Analysis (ONA) with step-by-step print-screen instructions: 1) Predictive HR Analytics: Use Excel's Statistical Analysis tools (Decision trees, Correlation, Multiple & Logistic Regression) to run Predictive HR Analytics. E.g. an employee is predicted to have a 60% probability of getting into accidents, if he is age 25, worked 1 year in the company & took 6 days sick leave. An employee is predicted to get rated "7" for Customer Service, if the training program that he attended has a training evaluation score of "8". An employee is predicted to resign if she is age 23, worked for 2 years, and takes 60 minutes to commute to work. 2) Organizational Network Analysis (ONA): Run ONA using Excel's network analysis tool. Learn how to convert an employee's organizational network into a score & then predict if they will be a high-potential (HiPo). E.g. an employee is predicted to be a HiPo with performance rating of "9", if his "Social Network Size" is "16", "Social Network Diversity Index" is "3" & "Competency Score" is "8". 3) Text Mining, Sentiment Analysis & Word Clouds: Mine text from social network posts, employee engagement surveys & Glassdoor comments, then run Sentiment Analysis using Excel & visualize the insights with "Word Clouds". Learn how to predict a company's average employee attrition rate based on its sentiment. E.g. a company's average employee attrition rate is predicted to be 8%, if unemployment rate is 3%, GDP growth is 2%, Glassdoor public sentiment rating is "5", and engagement score is "7".
Predictive Hr Analytics
DOWNLOAD
Author : Dr Martin R. Edwards
language : en
Publisher: Kogan Page Publishers
Release Date : 2019-03-03
Predictive Hr Analytics written by Dr Martin R. Edwards and has been published by Kogan Page Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-03 with Business & Economics categories.
HR metrics and organizational people-related data are an invaluable source of information from which to identify trends and patterns in order to make effective business decisions. But HR practitioners often lack the statistical and analytical know-how to fully harness the potential of this data. Predictive HR Analytics provides a clear, accessible framework for understanding and working with people analytics and advanced statistical techniques. Using the statistical package SPSS (with R syntax included), it takes readers step by step through worked examples, showing them how to carry out and interpret analyses of HR data in areas such as employee engagement, performance and turnover. Readers are shown how to use the results to enable them to develop effective evidence-based HR strategies. This second edition has been updated to include the latest material on machine learning, biased algorithms, data protection and GDPR considerations, a new example using survival analyses, and up-to-the-minute screenshots and examples with SPSS version 25. It is supported by a new appendix showing main R coding, and online resources consisting of SPSS and Excel data sets and R syntax with worked case study examples.
Applied Predictive Analytics
DOWNLOAD
Author : Dean Abbott
language : en
Publisher: John Wiley & Sons
Release Date : 2014-04-14
Applied Predictive Analytics written by Dean Abbott and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-14 with Computers categories.
Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.
Profit Driven Business Analytics
DOWNLOAD
Author : Wouter Verbeke
language : en
Publisher: John Wiley & Sons
Release Date : 2017-09-22
Profit Driven Business Analytics written by Wouter Verbeke and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-22 with Business & Economics categories.
Maximize profit and optimize decisions with advanced business analytics Profit-Driven Business Analytics provides actionable guidance on optimizing the use of data to add value and drive better business. Combining theoretical and technical insights into daily operations and long-term strategy, this book acts as a development manual for practitioners seeking to conceive, develop, and manage advanced analytical models. Detailed discussion delves into the wide range of analytical approaches and modeling techniques that can help maximize business payoff, and the author team draws upon their recent research to share deep insight about optimal strategy. Real-life case studies and examples illustrate these techniques at work, and provide clear guidance for implementation in your own organization. From step-by-step instruction on data handling, to analytical fine-tuning, to evaluating results, this guide provides invaluable guidance for practitioners seeking to reap the advantages of true business analytics. Despite widespread discussion surrounding the value of data in decision making, few businesses have adopted advanced analytic techniques in any meaningful way. This book shows you how to delve deeper into the data and discover what it can do for your business. Reinforce basic analytics to maximize profits Adopt the tools and techniques of successful integration Implement more advanced analytics with a value-centric approach Fine-tune analytical information to optimize business decisions Both data stored and streamed has been increasing at an exponential rate, and failing to use it to the fullest advantage equates to leaving money on the table. From bolstering current efforts to implementing a full-scale analytics initiative, the vast majority of businesses will see greater profit by applying advanced methods. Profit-Driven Business Analytics provides a practical guidebook and reference for adopting real business analytics techniques.
Modeling Techniques In Predictive Analytics
DOWNLOAD
Author : Thomas W. Miller
language : en
Publisher: FT Press
Release Date : 2013-08-23
Modeling Techniques In Predictive Analytics written by Thomas W. Miller and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-23 with Business & Economics categories.
Today, successful firms compete and win based on analytics. Modeling Techniques in Predictive Analytics brings together all the concepts, techniques, and R code you need to excel in any role involving analytics. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business challenges and business cases, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and even spatio-temporal data. For each problem, Miller explains why the problem matters, what data is relevant, how to explore your data once you’ve identified it, and then how to successfully model that data. You’ll learn how to model data conceptually, with words and figures; and then how to model it with realistic R programs that deliver actionable insights and knowledge. Miller walks you through model construction, explanatory variable subset selection, and validation, demonstrating best practices for improving out-of-sample predictive performance. He employs data visualization and statistical graphics in exploring data, presenting models, and evaluating performance. All example code is presented in R, today’s #1 system for applied statistics, statistical research, and predictive modeling; code is set apart from other text so it’s easy to find for those who want it (and easy to skip for those who don’t).
Management Information Systems
DOWNLOAD
Author : Kenneth C. Laudon
language : es
Publisher: Pearson Educación
Release Date : 2004
Management Information Systems written by Kenneth C. Laudon and has been published by Pearson Educación this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Business & Economics categories.
Management Information Systems provides comprehensive and integrative coverage of essential new technologies, information system applications, and their impact on business models and managerial decision-making in an exciting and interactive manner. The twelfth edition focuses on the major changes that have been made in information technology over the past two years, and includes new opening, closing, and Interactive Session cases.
Data Mining For Business Analytics
DOWNLOAD
Author : Galit Shmueli
language : en
Publisher: John Wiley & Sons
Release Date : 2019-10-14
Data Mining For Business Analytics written by Galit Shmueli and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-14 with Mathematics categories.
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Systems Of Insight For Digital Transformation Using Ibm Operational Decision Manager Advanced And Predictive Analytics
DOWNLOAD
Author : Whei-Jen Chen
language : en
Publisher: IBM Redbooks
Release Date : 2015-12-03
Systems Of Insight For Digital Transformation Using Ibm Operational Decision Manager Advanced And Predictive Analytics written by Whei-Jen Chen and has been published by IBM Redbooks this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-03 with Computers categories.
Systems of record (SORs) are engines that generates value for your business. Systems of engagement (SOE) are always evolving and generating new customer-centric experiences and new opportunities to capitalize on the value in the systems of record. The highest value is gained when systems of record and systems of engagement are brought together to deliver insight. Systems of insight (SOI) monitor and analyze what is going on with various behaviors in the systems of engagement and information being stored or transacted in the systems of record. SOIs seek new opportunities, risks, and operational behavior that needs to be reported or have action taken to optimize business outcomes. Systems of insight are at the core of the Digital Experience, which tries to derive insights from the enormous amount of data generated by automated processes and customer interactions. Systems of Insight can also provide the ability to apply analytics and rules to real-time data as it flows within, throughout, and beyond the enterprise (applications, databases, mobile, social, Internet of Things) to gain the wanted insight. Deriving this insight is a key step toward being able to make the best decisions and take the most appropriate actions. Examples of such actions are to improve the number of satisfied clients, identify clients at risk of leaving and incentivize them to stay loyal, identify patterns of risk or fraudulent behavior and take action to minimize it as early as possible, and detect patterns of behavior in operational systems and transportation that lead to failures, delays, and maintenance and take early action to minimize risks and costs. IBM® Operational Decision Manager is a decision management platform that provides capabilities that support both event-driven insight patterns, and business-rule-driven scenarios. It also can easily be used in combination with other IBM Analytics solutions, as the detailed examples will show. IBM Operational Decision Manager Advanced, along with complementary IBM software offerings that also provide capability for systems of insight, provides a way to deliver the greatest value to your customers and your business. IBM Operational Decision Manager Advanced brings together data from different sources to recognize meaningful trends and patterns. It empowers business users to define, manage, and automate repeatable operational decisions. As a result, organizations can create and shape customer-centric business moments. This IBM Redbooks® publication explains the key concepts of systems of insight and how to implement a system of insight solution with examples. It is intended for IT architects and professionals who are responsible for implementing a systems of insights solution requiring event-based context pattern detection and deterministic decision services to enhance other analytics solution components with IBM Operational Decision Manager Advanced.
Survey Of Text Mining
DOWNLOAD
Author : Michael W. Berry
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Survey Of Text Mining written by Michael W. Berry and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Computers categories.
Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory. As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments. This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
The Practical Guide To Hr Analytics
DOWNLOAD
Author : Shonna D. Waters
language : en
Publisher: Kogan Page Publishers
Release Date : 2018-06-15
The Practical Guide To Hr Analytics written by Shonna D. Waters and has been published by Kogan Page Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-15 with Computers categories.
HR professionals are increasingly expected to understand and apply data analytics, but many don't know where to start. The Practical Guide to HR Analytics offers a clear, practical guide to understanding and applying data to real-world HR issues. From making the business case for analytics to launching an HR analytics function, the book walks readers through the forms, uses, and interpretations of data in an HR context. It covers essential topics like avoiding common pitfalls, visualizing data effectively and using storytelling to communicate findings. With straightforward language and actionable advice, it helps demystify analytics for professionals at all levels. Whether you're new to analytics or seeking to sharpen your skills, this is your go-to resource for data-driven HR.