Principal Component Neural Networks

DOWNLOAD
Download Principal Component Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Principal Component Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Principal Component Neural Networks
DOWNLOAD
Author : K. I. Diamantaras
language : en
Publisher: Wiley-Interscience
Release Date : 1996-03-08
Principal Component Neural Networks written by K. I. Diamantaras and has been published by Wiley-Interscience this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-03-08 with Computers categories.
Systematically explores the relationship between principal component analysis (PCA) and neural networks. Provides a synergistic examination of the mathematical, algorithmic, application and architectural aspects of principal component neural networks. Using a unified formulation, the authors present neural models performing PCA from the Hebbian learning rule and those which use least squares learning rules such as back-propagation. Examines the principles of biological perceptual systems to explain how the brain works. Every chapter contains a selected list of applications examples from diverse areas.
Principal Component Analysis
DOWNLOAD
Author : I.T. Jolliffe
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Principal Component Analysis written by I.T. Jolliffe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Mining Intelligence And Knowledge Exploration
DOWNLOAD
Author : Rajendra Prasath
language : en
Publisher: Springer
Release Date : 2013-12-16
Mining Intelligence And Knowledge Exploration written by Rajendra Prasath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-16 with Computers categories.
This book constitutes the proceedings of the First International Conference on Mining Intelligence and Knowledge Exploration, MIKE 2013, held in Tamil Nadu, India on December 2013. The 82 papers presented were carefully reviewed and selected from 334 submissions. The papers cover the topics such as feature selection, classification, clustering, image processing, network security, speech processing, machine learning, information retrieval, recommender systems, natural language processing, language, cognition and computation and other certain problems in dynamical systems.
Principal Component Analysis Networks And Algorithms
DOWNLOAD
Author : Xiangyu Kong
language : en
Publisher: Springer
Release Date : 2017-01-09
Principal Component Analysis Networks And Algorithms written by Xiangyu Kong and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-09 with Technology & Engineering categories.
This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.
Artificial Neural Networks And Machine Learning Icann 2013
DOWNLOAD
Author : Valeri Mladenov
language : en
Publisher: Springer
Release Date : 2013-09-04
Artificial Neural Networks And Machine Learning Icann 2013 written by Valeri Mladenov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-04 with Computers categories.
The book constitutes the proceedings of the 23rd International Conference on Artificial Neural Networks, ICANN 2013, held in Sofia, Bulgaria, in September 2013. The 78 papers included in the proceedings were carefully reviewed and selected from 128 submissions. The focus of the papers is on following topics: neurofinance graphical network models, brain machine interfaces, evolutionary neural networks, neurodynamics, complex systems, neuroinformatics, neuroengineering, hybrid systems, computational biology, neural hardware, bioinspired embedded systems, and collective intelligence.
Independent Component Analysis
DOWNLOAD
Author : Aapo Hyvärinen
language : en
Publisher: John Wiley & Sons
Release Date : 2004-03-22
Independent Component Analysis written by Aapo Hyvärinen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-22 with Science categories.
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
Generalized Principal Component Analysis
DOWNLOAD
Author : René Vidal
language : en
Publisher: Springer
Release Date : 2016-04-11
Generalized Principal Component Analysis written by René Vidal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-11 with Science categories.
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.
Statistics For Machine Learning
DOWNLOAD
Author : Pratap Dangeti
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-21
Statistics For Machine Learning written by Pratap Dangeti and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-21 with Computers categories.
Build Machine Learning models with a sound statistical understanding. About This Book Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering. Master the statistical aspect of Machine Learning with the help of this example-rich guide to R and Python. Who This Book Is For This book is intended for developers with little to no background in statistics, who want to implement Machine Learning in their systems. Some programming knowledge in R or Python will be useful. What You Will Learn Understand the Statistical and Machine Learning fundamentals necessary to build models Understand the major differences and parallels between the statistical way and the Machine Learning way to solve problems Learn how to prepare data and feed models by using the appropriate Machine Learning algorithms from the more-than-adequate R and Python packages Analyze the results and tune the model appropriately to your own predictive goals Understand the concepts of required statistics for Machine Learning Introduce yourself to necessary fundamentals required for building supervised & unsupervised deep learning models Learn reinforcement learning and its application in the field of artificial intelligence domain In Detail Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for Machine Learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. You will also design programs for performing tasks such as model, parameter fitting, regression, classification, density collection, and more. By the end of the book, you will have mastered the required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problem. Style and approach This practical, step-by-step guide will give you an understanding of the Statistical and Machine Learning fundamentals you'll need to build models.
Fundamentals Of Artificial Neural Networks
DOWNLOAD
Author : Mohamad H. Hassoun
language : en
Publisher: MIT Press
Release Date : 1995
Fundamentals Of Artificial Neural Networks written by Mohamad H. Hassoun and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Computers categories.
A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into the text in order to explain a wide range of existing empirical observations and commonly used heuristics.