Principles And Applications Of Relax A Robust And Universal Estimator

DOWNLOAD
Download Principles And Applications Of Relax A Robust And Universal Estimator PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Principles And Applications Of Relax A Robust And Universal Estimator book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Principles And Applications Of Relax A Robust And Universal Estimator
DOWNLOAD
Author : Renbiao Wu
language : en
Publisher: Springer
Release Date : 2019-03-27
Principles And Applications Of Relax A Robust And Universal Estimator written by Renbiao Wu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-27 with Technology & Engineering categories.
The multiple signal demixing and parameter estimation problems that result from the impacts of background noise and interference are issues that are frequently encountered in the fields of radar, sonar, communications, and navigation. Research in the signal processing and control fields has always focused on improving the estimation performance of parameter estimation methods at low SNR and maintaining the robustness of estimations in the presence of model errors. This book presents a universal and robust relaxation estimation method (RELAX), and introduces its basic principles and applications in the fields of classical line spectrum estimation, time of delay estimation, DOA estimation, and radar target imaging. This information is explained comprehensively and in great detail, and uses metaphors pertaining to romantic relationships to visualize the basic problems of parameter estimation, the basic principles of the five types of classical parameter estimation methods, and the relationships between these principles. The book serves as a reference for scientists and technologists in the fields of signal processing and control, while also providing relevant information for graduate students in the related fields.
Principles And Applications Of Relax
DOWNLOAD
Author : Qiongqiong Jia
language : en
Publisher:
Release Date : 2019
Principles And Applications Of Relax written by Qiongqiong Jia and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with TECHNOLOGY & ENGINEERING categories.
The multiple signal demixing and parameter estimation problems that result from the impacts of background noise and interference are issues that are frequently encountered in the fields of radar, sonar, communications, and navigation. Research in the signal processing and control fields has always focused on improving the estimation performance of parameter estimation methods at low SNR and maintaining the robustness of estimations in the presence of model errors. This book presents a universal and robust relaxation estimation method (RELAX), and introduces its basic principles and applications in the fields of classical line spectrum estimation, time of delay estimation, DOA estimation, and radar target imaging. This information is explained comprehensively and in great detail, and uses metaphors pertaining to romantic relationships to visualize the basic problems of parameter estimation, the basic principles of the five types of classical parameter estimation methods, and the relationships between these principles. The book serves as a reference for scientists and technologists in the fields of signal processing and control, while also providing relevant information for graduate students in the related fields.
Robust Adaptive Control
DOWNLOAD
Author : Petros A. Ioannou
language : en
Publisher: Courier Corporation
Release Date : 2012-12-19
Robust Adaptive Control written by Petros A. Ioannou and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-19 with Technology & Engineering categories.
" Presented in a tutorial style, this text reduces the confusion and difficulty in grasping the design, analysis, and robustness of a wide class of adaptive controls for continuous-time plants. The treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Excellent text and authoritative reference"--
Conformal Prediction For Reliable Machine Learning
DOWNLOAD
Author : Vineeth Balasubramanian
language : en
Publisher: Newnes
Release Date : 2014-04-23
Conformal Prediction For Reliable Machine Learning written by Vineeth Balasubramanian and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-23 with Computers categories.
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection
Federated Learning
DOWNLOAD
Author : Qiang Yang
language : en
Publisher: Springer Nature
Release Date : 2020-11-25
Federated Learning written by Qiang Yang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Computers categories.
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Feedback Systems
DOWNLOAD
Author : Karl Johan Åström
language : en
Publisher: Princeton University Press
Release Date : 2021-02-02
Feedback Systems written by Karl Johan Åström and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-02 with Technology & Engineering categories.
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Large Scale Kernel Machines
DOWNLOAD
Author : Léon Bottou
language : en
Publisher: MIT Press
Release Date : 2007
Large Scale Kernel Machines written by Léon Bottou and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.
Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically. Contributors Léon Bottou, Yoshua Bengio, Stéphane Canu, Eric Cosatto, Olivier Chapelle, Ronan Collobert, Dennis DeCoste, Ramani Duraiswami, Igor Durdanovic, Hans-Peter Graf, Arthur Gretton, Patrick Haffner, Stefanie Jegelka, Stephan Kanthak, S. Sathiya Keerthi, Yann LeCun, Chih-Jen Lin, Gaëlle Loosli, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, Gunnar Rätsch, Vikas Chandrakant Raykar, Konrad Rieck, Vikas Sindhwani, Fabian Sinz, Sören Sonnenburg, Jason Weston, Christopher K. I. Williams, Elad Yom-Tov
High Dimensional Covariance Estimation
DOWNLOAD
Author : Mohsen Pourahmadi
language : en
Publisher: John Wiley & Sons
Release Date : 2013-05-28
High Dimensional Covariance Estimation written by Mohsen Pourahmadi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-28 with Mathematics categories.
Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.
Graph Representation Learning
DOWNLOAD
Author : William L. Hamilton
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Graph Representation Learning written by William L. Hamilton and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Railway Mechanical And Electrical Engineer
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1834
Railway Mechanical And Electrical Engineer written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1834 with Railroad engineering categories.