[PDF] Principles Of Data Integration - eBooks Review

Principles Of Data Integration


Principles Of Data Integration
DOWNLOAD

Download Principles Of Data Integration PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Principles Of Data Integration book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Principles Of Data Integration


Principles Of Data Integration
DOWNLOAD
Author : AnHai Doan
language : en
Publisher: Elsevier
Release Date : 2012-06-25

Principles Of Data Integration written by AnHai Doan and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-25 with Computers categories.


Principles of Data Integration is the first comprehensive textbook of data integration, covering theoretical principles and implementation issues as well as current challenges raised by the semantic web and cloud computing. The book offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand. Readers will also learn how to build their own algorithms and implement their own data integration application. Written by three of the most respected experts in the field, this book provides an extensive introduction to the theory and concepts underlying today's data integration techniques, with detailed, instruction for their application using concrete examples throughout to explain the concepts. This text is an ideal resource for database practitioners in industry, including data warehouse engineers, database system designers, data architects/enterprise architects, database researchers, statisticians, and data analysts; students in data analytics and knowledge discovery; and other data professionals working at the R&D and implementation levels. - Offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand - Enables you to build your own algorithms and implement your own data integration applications



Principles Of Data Integration


Principles Of Data Integration
DOWNLOAD
Author : AnHai Doan
language : en
Publisher: Elsevier
Release Date : 2012-06-25

Principles Of Data Integration written by AnHai Doan and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-25 with Computers categories.


How do you approach answering queries when your data is stored in multiple databases that were designed independently by different people? This is first comprehensive book on data integration and is written by three of the most respected experts in the field. This book provides an extensive introduction to the theory and concepts underlying today's data integration techniques, with detailed, instruction for their application using concrete examples throughout to explain the concepts. Data integration is the problem of answering queries that span multiple data sources (e.g., databases, web pages). Data integration problems surface in multiple contexts, including enterprise information integration, query processing on the Web, coordination between government agencies and collaboration between scientists. In some cases, data integration is the key bottleneck to making progress in a field. The authors provide a working knowledge of data integration concepts and techniques, giving you the tools you need to develop a complete and concise package of algorithms and applications.



Principles Of Database Management


Principles Of Database Management
DOWNLOAD
Author : Wilfried Lemahieu
language : en
Publisher: Cambridge University Press
Release Date : 2018-07-12

Principles Of Database Management written by Wilfried Lemahieu and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-12 with Computers categories.


Introductory, theory-practice balanced text teaching the fundamentals of databases to advanced undergraduates or graduate students in information systems or computer science.



Principles Of Big Data


Principles Of Big Data
DOWNLOAD
Author : Jules J. Berman
language : en
Publisher: Newnes
Release Date : 2013-05-20

Principles Of Big Data written by Jules J. Berman and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-20 with Computers categories.


Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. - Learn general methods for specifying Big Data in a way that is understandable to humans and to computers - Avoid the pitfalls in Big Data design and analysis - Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources



Data And Information Quality


Data And Information Quality
DOWNLOAD
Author : Carlo Batini
language : en
Publisher: Springer
Release Date : 2016-03-23

Data And Information Quality written by Carlo Batini and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-23 with Computers categories.


This book provides a systematic and comparative description of the vast number of research issues related to the quality of data and information. It does so by delivering a sound, integrated and comprehensive overview of the state of the art and future development of data and information quality in databases and information systems. To this end, it presents an extensive description of the techniques that constitute the core of data and information quality research, including record linkage (also called object identification), data integration, error localization and correction, and examines the related techniques in a comprehensive and original methodological framework. Quality dimension definitions and adopted models are also analyzed in detail, and differences between the proposed solutions are highlighted and discussed. Furthermore, while systematically describing data and information quality as an autonomous research area, paradigms and influences deriving from other areas, such as probability theory, statistical data analysis, data mining, knowledge representation, and machine learning are also included. Last not least, the book also highlights very practical solutions, such as methodologies, benchmarks for the most effective techniques, case studies, and examples. The book has been written primarily for researchers in the fields of databases and information management or in natural sciences who are interested in investigating properties of data and information that have an impact on the quality of experiments, processes and on real life. The material presented is also sufficiently self-contained for masters or PhD-level courses, and it covers all the fundamentals and topics without the need for other textbooks. Data and information system administrators and practitioners, who deal with systems exposed to data-quality issues and as a result need a systematization of the field and practical methods in the area, will also benefit from the combination of concrete practical approaches with sound theoretical formalisms.



Principles Of Distributed Database Systems


Principles Of Distributed Database Systems
DOWNLOAD
Author : M. Tamer Özsu
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-02-24

Principles Of Distributed Database Systems written by M. Tamer Özsu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-24 with Computers categories.


This third edition of a classic textbook can be used to teach at the senior undergraduate and graduate levels. The material concentrates on fundamental theories as well as techniques and algorithms. The advent of the Internet and the World Wide Web, and, more recently, the emergence of cloud computing and streaming data applications, has forced a renewal of interest in distributed and parallel data management, while, at the same time, requiring a rethinking of some of the traditional techniques. This book covers the breadth and depth of this re-emerging field. The coverage consists of two parts. The first part discusses the fundamental principles of distributed data management and includes distribution design, data integration, distributed query processing and optimization, distributed transaction management, and replication. The second part focuses on more advanced topics and includes discussion of parallel database systems, distributed object management, peer-to-peer data management, web data management, data stream systems, and cloud computing. New in this Edition: • New chapters, covering database replication, database integration, multidatabase query processing, peer-to-peer data management, and web data management. • Coverage of emerging topics such as data streams and cloud computing • Extensive revisions and updates based on years of class testing and feedback Ancillary teaching materials are available.



Data Intensive Systems


Data Intensive Systems
DOWNLOAD
Author : Tomasz Wiktorski
language : en
Publisher: Springer
Release Date : 2019-01-01

Data Intensive Systems written by Tomasz Wiktorski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-01 with Computers categories.


Data-intensive systems are a technological building block supporting Big Data and Data Science applications.This book familiarizes readers with core concepts that they should be aware of before continuing with independent work and the more advanced technical reference literature that dominates the current landscape. The material in the book is structured following a problem-based approach. This means that the content in the chapters is focused on developing solutions to simplified, but still realistic problems using data-intensive technologies and approaches. The reader follows one reference scenario through the whole book, that uses an open Apache dataset. The origins of this volume are in lectures from a master’s course in Data-intensive Systems, given at the University of Stavanger. Some chapters were also a base for guest lectures at Purdue University and Lodz University of Technology.



Logic Based Artificial Intelligence


Logic Based Artificial Intelligence
DOWNLOAD
Author : Jack Minker
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-12-31

Logic Based Artificial Intelligence written by Jack Minker and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-12-31 with Computers categories.


The use of mathematical logic as a formalism for artificial intelligence was recognized by John McCarthy in 1959 in his paper on Programs with Common Sense. In a series of papers in the 1960's he expanded upon these ideas and continues to do so to this date. It is now 41 years since the idea of using a formal mechanism for AI arose. It is therefore appropriate to consider some of the research, applications and implementations that have resulted from this idea. In early 1995 John McCarthy suggested to me that we have a workshop on Logic-Based Artificial Intelligence (LBAI). In June 1999, the Workshop on Logic-Based Artificial Intelligence was held as a consequence of McCarthy's suggestion. The workshop came about with the support of Ephraim Glinert of the National Science Foundation (IIS-9S2013S), the American Association for Artificial Intelligence who provided support for graduate students to attend, and Joseph JaJa, Director of the University of Maryland Institute for Advanced Computer Studies who provided both manpower and financial support, and the Department of Computer Science. We are grateful for their support. This book consists of refereed papers based on presentations made at the Workshop. Not all of the Workshop participants were able to contribute papers for the book. The common theme of papers at the workshop and in this book is the use of logic as a formalism to solve problems in AI.



Principles Of Transaction Processing


Principles Of Transaction Processing
DOWNLOAD
Author : Philip A. Bernstein
language : en
Publisher: Morgan Kaufmann
Release Date : 2009-07-24

Principles Of Transaction Processing written by Philip A. Bernstein and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-24 with Computers categories.


Principles of Transaction Processing is a comprehensive guide to developing applications, designing systems, and evaluating engineering products. The book provides detailed discussions of the internal workings of transaction processing systems, and it discusses how these systems work and how best to utilize them. It covers the architecture of Web Application Servers and transactional communication paradigms.The book is divided into 11 chapters, which cover the following: Overview of transaction processing application and system structureSoftware abstractions found in transaction processing systemsArchitecture of multitier applications and the functions of transactional middleware and database serversQueued transaction processing and its internals, with IBM's Websphere MQ and Oracle's Stream AQ as examplesBusiness process management and its mechanismsDescription of the two-phase locking function, B-tree locking and multigranularity locking used in SQL database systems and nested transaction lockingSystem recovery and its failuresTwo-phase commit protocolComparison between the tradeoffs of replicating servers versus replication resourcesTransactional middleware products and standardsFuture trends, such as cloud computing platforms, composing scalable systems using distributed computing components, the use of flash storage to replace disks and data streams from sensor devices as a source of transaction requests. The text meets the needs of systems professionals, such as IT application programmers who construct TP applications, application analysts, and product developers. The book will also be invaluable to students and novices in application programming. - Complete revision of the classic "non mathematical" transaction processing reference for systems professionals - Updated to focus on the needs of transaction processing via the Internet-- the main focus of business data processing investments, via web application servers, SOA, and important new TP standards - Retains the practical, non-mathematical, but thorough conceptual basis of the first edition



Principles Of Data Science


Principles Of Data Science
DOWNLOAD
Author : Sinan Ozdemir
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-12-16

Principles Of Data Science written by Sinan Ozdemir and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-16 with Computers categories.


Learn the techniques and math you need to start making sense of your data About This Book Enhance your knowledge of coding with data science theory for practical insight into data science and analysis More than just a math class, learn how to perform real-world data science tasks with R and Python Create actionable insights and transform raw data into tangible value Who This Book Is For You should be fairly well acquainted with basic algebra and should feel comfortable reading snippets of R/Python as well as pseudo code. You should have the urge to learn and apply the techniques put forth in this book on either your own data sets or those provided to you. If you have the basic math skills but want to apply them in data science or you have good programming skills but lack math, then this book is for you. What You Will Learn Get to know the five most important steps of data science Use your data intelligently and learn how to handle it with care Bridge the gap between mathematics and programming Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable results Build and evaluate baseline machine learning models Explore the most effective metrics to determine the success of your machine learning models Create data visualizations that communicate actionable insights Read and apply machine learning concepts to your problems and make actual predictions In Detail Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you'll feel confident about asking—and answering—complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas. With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you'll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You'll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means. Style and approach This is an easy-to-understand and accessible tutorial. It is a step-by-step guide with use cases, examples, and illustrations to get you well-versed with the concepts of data science. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts later on and will help you implement these techniques in the real world.