[PDF] Principles Of Parallel Scientific Computing - eBooks Review

Principles Of Parallel Scientific Computing


Principles Of Parallel Scientific Computing
DOWNLOAD

Download Principles Of Parallel Scientific Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Principles Of Parallel Scientific Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Principles Of Parallel Scientific Computing


Principles Of Parallel Scientific Computing
DOWNLOAD
Author : Tobias Weinzierl
language : en
Publisher:
Release Date : 2021

Principles Of Parallel Scientific Computing written by Tobias Weinzierl and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


It is the combination of mathematical ideas and efficient programs that drives the progress in many scientific disciplines: The faster results can be generated on a computer, the bigger and the more accurate are the challenges that can be solved. This textbook targets students who have programming skills and do not shy away from mathematics, though they might be educated in computer science or an application domain and have no primary interest in the maths. The book is for students who want to see some simulations up and running. It introduces the basic concepts and ideas behind applied mathematics and parallel programming that are needed to write numerical simulations for today's multicore workstations. The intention is not to dive into one particular application domain or to introduce a new programming language; rather it is to lay the generic foundations for future studies and projects in this field. Topics and features: Fits into many degrees where students have already been exposed to programming languages Pairs an introduction to mathematical concepts with an introduction to parallel programming Emphasises the paradigms and ideas behind code parallelisation, so students can later on transfer their knowledge and skills Illustrates fundamental numerical concepts, preparing students for more formal textbooks The easily digestible text prioritises clarity and intuition over formalism, illustrating basic ideas that are of relevance in various subdomains of scientific computing. Its primary goal is to make theoretical and paradigmatic ideas accessible and even fascinating to undergraduate students. Tobias Weinzierl is professor in the Department of Computer Science at Durham University, Durham, UK. He has worked at the Munich Centre for Advanced Computing (see the Springer edited book, Advanced Computing) before, and holds a PhD and habilitation from the Technical University Munich.



Parallel Scientific Computing In C And Mpi


Parallel Scientific Computing In C And Mpi
DOWNLOAD
Author : George Karniadakis
language : en
Publisher: Cambridge University Press
Release Date : 2003-06-16

Parallel Scientific Computing In C And Mpi written by George Karniadakis and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-16 with Computers categories.


Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.



Scientific Parallel Computing


Scientific Parallel Computing
DOWNLOAD
Author : Larkin Ridgway Scott
language : en
Publisher: Princeton University Press
Release Date : 2021-03-09

Scientific Parallel Computing written by Larkin Ridgway Scott and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-09 with Computers categories.


What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book



Principles Of Parallel Scientific Computing


Principles Of Parallel Scientific Computing
DOWNLOAD
Author : Tobias Weinzierl
language : en
Publisher: Springer Nature
Release Date : 2022-02-09

Principles Of Parallel Scientific Computing written by Tobias Weinzierl and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-09 with Computers categories.


New insight in many scientific and engineering fields is unthinkable without the use of numerical simulations running efficiently on modern computers. The faster we get new results, the bigger and accurate are the problems that we can solve. It is the combination of mathematical ideas plus efficient programming that drives the progress in many disciplines. Future champions in the area thus will have to be qualified in their application domain, they will need a profound understanding of some mathematical ideas, and they need the skills to deliver fast code. The present textbook targets students which have programming skills already and do not shy away from mathematics, though they might be educated in computer science or an application domain. It introduces the basic concepts and ideas behind applied mathematics and parallel programming that we need to write numerical simulations for today’s multicore workstations. Our intention is not to dive into one particular application domain or to introduce a new programming language – we lay the generic foundations for future courses and projects in the area. The text is written in an accessible style which is easy to digest for students without years and years of mathematics education. It values clarity and intuition over formalism, and uses a simple N-body simulation setup to illustrate basic ideas that are of relevance in various different subdomains of scientific computing. Its primary goal is to make theoretical and paradigmatic ideas accessible to undergraduate students and to bring the fascination of the field across.



An Introduction To Parallel And Vector Scientific Computation


An Introduction To Parallel And Vector Scientific Computation
DOWNLOAD
Author : Ronald W. Shonkwiler
language : en
Publisher: Cambridge University Press
Release Date : 2006-08-14

An Introduction To Parallel And Vector Scientific Computation written by Ronald W. Shonkwiler and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-08-14 with Computers categories.


In this text, students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism. The authors begin by giving the reader a deeper understanding of the issues through a general examination of timing, data dependencies, and communication. These ideas are implemented with respect to shared memory, parallel and vector processing, and distributed memory cluster computing. Threads, OpenMP, and MPI are covered, along with code examples in Fortran, C, and Java. The principles of parallel computation are applied throughout as the authors cover traditional topics in a first course in scientific computing. Building on the fundamentals of floating point representation and numerical error, a thorough treatment of numerical linear algebra and eigenvector/eigenvalue problems is provided. By studying how these algorithms parallelize, the reader is able to explore parallelism inherent in other computations, such as Monte Carlo methods.



Parallel Computing


Parallel Computing
DOWNLOAD
Author : M. R. Bhujade
language : en
Publisher: New Age International
Release Date : 2009

Parallel Computing written by M. R. Bhujade and has been published by New Age International this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Computer systems categories.




Parallel Computations


Parallel Computations
DOWNLOAD
Author : Garry Rodrigue
language : en
Publisher: Elsevier
Release Date : 2014-05-10

Parallel Computations written by Garry Rodrigue and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Reference categories.


Parallel Computations focuses on parallel computation, with emphasis on algorithms used in a variety of numerical and physical applications and for many different types of parallel computers. Topics covered range from vectorization of fast Fourier transforms (FFTs) and of the incomplete Cholesky conjugate gradient (ICCG) algorithm on the Cray-1 to calculation of table lookups and piecewise functions. Single tridiagonal linear systems and vectorized computation of reactive flow are also discussed. Comprised of 13 chapters, this volume begins by classifying parallel computers and describing techniques for performing matrix operations on them. The reader is then introduced to FFTs and the tridiagonal linear system as well as the ICCG method. Different versions of the conjugate gradient method for solving the time-dependent diffusion equation are considered. Subsequent chapters deal with two- and three-dimensional fluid flow calculations, paying particular attention to the principal issues in designing efficient numerical methods for hydrodynamic calculations; the decisions that a numerical modeler must make to optimize chemically reactive flow simulations; and how to handle disk-to-core data transfer and storage allocation for the solution of the implicit equations for three-dimensional flows. The book also describes the time-split finite difference scheme for solving the two-dimensional Navier-Stokes equation for flows through slotted nozzles. Finally, the large-scale stimulation of plasmas, as carried out on a small computer with an array processor, is discussed. This monograph should be of interest to specialists in computer science.



Parallel Algorithms


Parallel Algorithms
DOWNLOAD
Author : Henri Casanova
language : en
Publisher: CRC Press
Release Date : 2008-07-17

Parallel Algorithms written by Henri Casanova and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-07-17 with Computers categories.


Focusing on algorithms for distributed-memory parallel architectures, Parallel Algorithms presents a rigorous yet accessible treatment of theoretical models of parallel computation, parallel algorithm design for homogeneous and heterogeneous platforms, complexity and performance analysis, and essential notions of scheduling. The book extract



Parallel Processing For Scientific Computing


Parallel Processing For Scientific Computing
DOWNLOAD
Author : Michael A. Heroux
language : en
Publisher: SIAM
Release Date : 2006-01-01

Parallel Processing For Scientific Computing written by Michael A. Heroux and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Computers categories.


Scientific computing has often been called the third approach to scientific discovery, emerging as a peer to experimentation and theory. Historically, the synergy between experimentation and theory has been well understood: experiments give insight into possible theories, theories inspire experiments, experiments reinforce or invalidate theories, and so on. As scientific computing has evolved to produce results that meet or exceed the quality of experimental and theoretical results, it has become indispensable.Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering. This edited volume serves as an up-to-date reference for researchers and application developers on the state of the art in scientific computing. It also serves as an excellent overview and introduction, especially for graduate and senior-level undergraduate students interested in computational modeling and simulation and related computer science and applied mathematics aspects.Contents List of Figures; List of Tables; Preface; Chapter 1: Frontiers of Scientific Computing: An Overview; Part I: Performance Modeling, Analysis and Optimization. Chapter 2: Performance Analysis: From Art to Science; Chapter 3: Approaches to Architecture-Aware Parallel Scientific Computation; Chapter 4: Achieving High Performance on the BlueGene/L Supercomputer; Chapter 5: Performance Evaluation and Modeling of Ultra-Scale Systems; Part II: Parallel Algorithms and Enabling Technologies. Chapter 6: Partitioning and Load Balancing; Chapter 7: Combinatorial Parallel and Scientific Computing; Chapter 8: Parallel Adaptive Mesh Refinement; Chapter 9: Parallel Sparse Solvers, Preconditioners, and Their Applications; Chapter 10: A Survey of Parallelization Techniques for Multigrid Solvers; Chapter 11: Fault Tolerance in Large-Scale Scientific Computing; Part III: Tools and Frameworks for Parallel Applications. Chapter 12: Parallel Tools and Environments: A Survey; Chapter 13: Parallel Linear Algebra Software; Chapter 14: High-Performance Component Software Systems; Chapter 15: Integrating Component-Based Scientific Computing Software; Part IV: Applications of Parallel Computing. Chapter 16: Parallel Algorithms for PDE-Constrained Optimization; Chapter 17: Massively Parallel Mixed-Integer Programming; Chapter 18: Parallel Methods and Software for Multicomponent Simulations; Chapter 19: Parallel Computational Biology; Chapter 20: Opportunities and Challenges for Parallel Computing in Science and Engineering; Index.



Introduction To Parallel Computing


Introduction To Parallel Computing
DOWNLOAD
Author : Wesley Petersen
language : en
Publisher: OUP Oxford
Release Date : 2004-01-08

Introduction To Parallel Computing written by Wesley Petersen and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-01-08 with Computers categories.


In the last few years, courses on parallel computation have been developed and offered in many institutions in the UK, Europe and US as a recognition of the growing significance of this topic in mathematics and computer science. There is a clear need for texts that meet the needs of students and lecturers and this book, based on the author's lecture at ETH Zurich, is an ideal practical student guide to scientific computing on parallel computers working up from a hardware instruction level, to shared memory machines, and finally to distributed memory machines. Aimed at advanced undergraduate and graduate students in applied mathematics, computer science, and engineering, subjects covered include linear algebra, fast Fourier transform, and Monte-Carlo simulations, including examples in C and, in some cases, Fortran. This book is also ideal for practitioners and programmers.