Probabilistic Modelling

DOWNLOAD
Download Probabilistic Modelling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probabilistic Modelling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Handbook Of Probabilistic Models
DOWNLOAD
Author : Pijush Samui
language : en
Publisher: Butterworth-Heinemann
Release Date : 2019-10-05
Handbook Of Probabilistic Models written by Pijush Samui and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-05 with Computers categories.
Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems
Probabilistic Modelling
DOWNLOAD
Author : I. Mitrani
language : en
Publisher: Cambridge University Press
Release Date : 1998
Probabilistic Modelling written by I. Mitrani and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Computers categories.
Probabilistic modelling is the most cost-effective means of performance and reliability evaluation of complex dynamic systems. This self-contained text will be welcomed by students and teachers for its no-nonsense treatment of the basic results and examples of their application. The only mathematical background that is assumed is basic calculus. The necessary fundamentals of probability theory are included, as well as an introduction to renewal, Poisson and Markov processes. Models arising in the fields of manufacturing, computing and communications, involving single or multiple service stations and one or more customer classes, are examined in some detail. Both exact and approximate solution methods are discussed, including recent techniques such as spectral expansion. Special attention is devoted to models of systems subject to breakdowns and repairs. Throughout the book, strong emphasis is placed on explaining the ideas behind the results and helping the reader to use them, making the book ideal for students in computer science, engineering or operations research taking courses in modern system design.
An Introduction To Probabilistic Modeling
DOWNLOAD
Author : Pierre Bremaud
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
An Introduction To Probabilistic Modeling written by Pierre Bremaud and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.
The Craft Of Probabilistic Modelling
DOWNLOAD
Author : J. Gani
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
The Craft Of Probabilistic Modelling written by J. Gani and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book brings together the personal accounts and reflections of nineteen mathematical model-builders, whose specialty is probabilistic modelling. The reader may well wonder why, apart from personal interest, one should commission and edit such a collection of articles. There are, of course, many reasons, but perhaps the three most relevant are: (i) a philosophicaJ interest in conceptual models; this is an interest shared by everyone who has ever puzzled over the relationship between thought and reality; (ii) a conviction, not unsupported by empirical evidence, that probabilistic modelling has an important contribution to make to scientific research; and finally (iii) a curiosity, historical in its nature, about the complex interplay between personal events and the development of a field of mathematical research, namely applied probability. Let me discuss each of these in turn. Philosophical Abstraction, the formation of concepts, and the construction of conceptual models present us with complex philosophical problems which date back to Democritus, Plato and Aristotle. We have all, at one time or another, wondered just how we think; are our thoughts, concepts and models of reality approxim&tions to the truth, or are they simply functional constructs helping us to master our environment? Nowhere are these problems more apparent than in mathematical model ling, where idealized concepts and constructions replace the imperfect realities for which they stand.
Probabilistic Modeling In Bioinformatics And Medical Informatics
DOWNLOAD
Author : Dirk Husmeier
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-06
Probabilistic Modeling In Bioinformatics And Medical Informatics written by Dirk Husmeier and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-06 with Computers categories.
Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.
Probabilistic Graphical Models
DOWNLOAD
Author : Daphne Koller
language : en
Publisher: MIT Press
Release Date : 2009-07-31
Probabilistic Graphical Models written by Daphne Koller and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-31 with Computers categories.
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Probabilistic Models Of The Brain
DOWNLOAD
Author : Rajesh P.N. Rao
language : en
Publisher: MIT Press
Release Date : 2002-03-29
Probabilistic Models Of The Brain written by Rajesh P.N. Rao and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-03-29 with Medical categories.
A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.
Hardware Aware Probabilistic Machine Learning Models
DOWNLOAD
Author : Laura Isabel Galindez Olascoaga
language : en
Publisher: Springer Nature
Release Date : 2021-05-19
Hardware Aware Probabilistic Machine Learning Models written by Laura Isabel Galindez Olascoaga and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-19 with Technology & Engineering categories.
This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumption and performance of the machine learning task, with the overarching goal of balancing the two optimally. The book first motivates extreme-edge computing in the context of the Internet of Things (IoT) paradigm. Then, it briefly reviews the steps involved in the execution of a machine learning task and identifies the implications associated with implementing this type of workload in resource-constrained devices. The core of this book focuses on augmenting and exploiting the properties of Bayesian Networks and Probabilistic Circuits in order to endow them with hardware-awareness. The proposed models can encode the properties of various device sub-systems that are typically not considered by other resource-aware strategies, bringing about resource-saving opportunities that traditional approaches fail to uncover. The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples show the potential of attaining significant resource-saving opportunities with minimal accuracy losses at application time. Overall, this book constitutes a novel approach to hardware-algorithm co-optimization that further bridges the fields of Machine Learning and Electrical Engineering.
Probabilistic Modeling In System Engineering
DOWNLOAD
Author : Andrey Kostogryzov
language : en
Publisher: BoD – Books on Demand
Release Date : 2018-09-26
Probabilistic Modeling In System Engineering written by Andrey Kostogryzov and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-26 with Technology & Engineering categories.
This book is intended for systems analysts, designers, developers, users, experts, as well as those involved in quality, risk, safety and security management, and, of course, scientists and students. The various sets of original and traditional probabilistic models and interesting results of their applications to the research of different systems are presented. The models are understandable and applicable for solving system engineering problems: to optimize system requirements, compare different processes, rationale technical decisions, carry out tests, adjust technological parameters, and predict and analyze quality and risks. The engineering decisions, scientifically proven by the proposed models and software tools, can provide purposeful, essential improvement of quality and mitigation of risks, and reduce the expense of operating systems. Models, methods, and software tools can also be used in education for system analysis and mathematical modeling on specializations, for example "systems engineering," "operations research," "enterprise management," "project management," "risk management," "quality of systems," "safety and security," "smart systems," "system of systems," etc.
Scalable Optimization Via Probabilistic Modeling
DOWNLOAD
Author : Martin Pelikan
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-09-25
Scalable Optimization Via Probabilistic Modeling written by Martin Pelikan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-25 with Mathematics categories.
I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.