Probabilistic Ranking Techniques In Relational Databases

DOWNLOAD
Download Probabilistic Ranking Techniques In Relational Databases PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probabilistic Ranking Techniques In Relational Databases book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Probabilistic Ranking Techniques In Relational Databases
DOWNLOAD
Author : Ihab Ilyas
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Probabilistic Ranking Techniques In Relational Databases written by Ihab Ilyas and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.
Ranking queries are widely used in data exploration, data analysis and decision making scenarios. While most of the currently proposed ranking techniques focus on deterministic data, several emerging applications involve data that are imprecise or uncertain. Ranking uncertain data raises new challenges in query semantics and processing, making conventional methods inapplicable. Furthermore, the interplay between ranking and uncertainty models introduces new dimensions for ordering query results that do not exist in the traditional settings. This lecture describes new formulations and processing techniques for ranking queries on uncertain data. The formulations are based on marriage of traditional ranking semantics with possible worlds semantics under widely-adopted uncertainty models. In particular, we focus on discussing the impact of tuple-level and attribute-level uncertainty on the semantics and processing techniques of ranking queries. Under the tuple-level uncertainty model, we describe new processing techniques leveraging the capabilities of relational database systems to recognize and handle data uncertainty in score-based ranking. Under the attribute-level uncertainty model, we describe new probabilistic ranking models and a set of query evaluation algorithms, including sampling-based techniques. We also discuss supporting rank join queries on uncertain data, and we show how to extend current rank join methods to handle uncertainty in scoring attributes. Table of Contents: Introduction / Uncertainty Models / Query Semantics / Methodologies / Uncertain Rank Join / Conclusion
Probabilistic Ranking Techniques In Relational Databases
DOWNLOAD
Author : Ihab F. Ilyas
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2011
Probabilistic Ranking Techniques In Relational Databases written by Ihab F. Ilyas and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.
Ranking queries are widely used in data exploration, data analysis and decision making scenarios. While most of the currently proposed ranking techniques focus on deterministic data, several emerging applications involve data that are imprecise or uncertain. Ranking uncertain data raises new challenges in query semantics and processing, making conventional methods inapplicable. Furthermore, the interplay between ranking and uncertainty models introduces new dimensions for ordering query results that do not exist in the traditional settings. This lecture describes new formulations and processing techniques for ranking queries on uncertain data. The formulations are based on marriage of traditional ranking semantics with possible worlds semantics under widely-adopted uncertainty models. In particular, we focus on discussing the impact of tuple-level and attribute-level uncertainty on the semantics and processing techniques of ranking queries. Under the tuple-level uncertainty model, we describe new processing techniques leveraging the capabilities of relational database systems to recognize and handle data uncertainty in score-based ranking. Under the attribute-level uncertainty model, we describe new probabilistic ranking models and a set of query evaluation algorithms, including sampling-based techniques. We also discuss supporting rank join queries on uncertain data, and we show how to extend current rank join methods to handle uncertainty in scoring attributes. Table of Contents: Introduction / Uncertainty Models / Query Semantics / Methodologies / Uncertain Rank Join / Conclusion
Probabilistic Ranking Techniques In Relational Databases
DOWNLOAD
Author : Ihab Ilyas
language : en
Publisher: Springer
Release Date : 2011-03-21
Probabilistic Ranking Techniques In Relational Databases written by Ihab Ilyas and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-21 with Computers categories.
Ranking queries are widely used in data exploration, data analysis and decision making scenarios. While most of the currently proposed ranking techniques focus on deterministic data, several emerging applications involve data that are imprecise or uncertain. Ranking uncertain data raises new challenges in query semantics and processing, making conventional methods inapplicable. Furthermore, the interplay between ranking and uncertainty models introduces new dimensions for ordering query results that do not exist in the traditional settings. This lecture describes new formulations and processing techniques for ranking queries on uncertain data. The formulations are based on marriage of traditional ranking semantics with possible worlds semantics under widely-adopted uncertainty models. In particular, we focus on discussing the impact of tuple-level and attribute-level uncertainty on the semantics and processing techniques of ranking queries. Under the tuple-level uncertainty model, we describe new processing techniques leveraging the capabilities of relational database systems to recognize and handle data uncertainty in score-based ranking. Under the attribute-level uncertainty model, we describe new probabilistic ranking models and a set of query evaluation algorithms, including sampling-based techniques. We also discuss supporting rank join queries on uncertain data, and we show how to extend current rank join methods to handle uncertainty in scoring attributes. Table of Contents: Introduction / Uncertainty Models / Query Semantics / Methodologies / Uncertain Rank Join / Conclusion
Answering Queries Using Views
DOWNLOAD
Author : Foto Afrati
language : en
Publisher: Springer Nature
Release Date : 2022-11-10
Answering Queries Using Views written by Foto Afrati and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-10 with Computers categories.
The topic of using views to answer queries has been popular for a few decades now, as it cuts across domains such as query optimization, information integration, data warehousing, website design, and, recently, database-as-a-service and data placement in cloud systems. This book assembles foundational work on answering queries using views in a self-contained manner, with an effort to choose material that constitutes the backbone of the research. It presents efficient algorithms and covers the following problems: query containment; rewriting queries using views in various logical languages; equivalent rewritings and maximally contained rewritings; and computing certain answers in the data-integration and data-exchange settings. Query languages that are considered are fragments of SQL, in particular, select-project-join queries, also called conjunctive queries (with or without arithmetic comparisons or negation), and aggregate SQL queries.
Query Answer Authentication
DOWNLOAD
Author : HweeHwa Pang
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Query Answer Authentication written by HweeHwa Pang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.
In data publishing, the owner delegates the role of satisfying user queries to a third-party publisher. As the servers of the publisher may be untrusted or susceptible to attacks, we cannot assume that they would always process queries correctly, hence there is a need for users to authenticate their query answers. This book introduces various notions that the research community has studied for defining the correctness of a query answer. In particular, it is important to guarantee the completeness, authenticity and minimality of the answer, as well as its freshness. We present authentication mechanisms for a wide variety of queries in the context of relational and spatial databases, text retrieval, and data streams. We also explain the cryptographic protocols from which the authentication mechanisms derive their security properties. Table of Contents: Introduction / Cryptography Foundation / Relational Queries / Spatial Queries / Text Search Queries / Data Streams / Conclusion
Declarative Networking
DOWNLOAD
Author : Boon Thau Loo
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Declarative Networking written by Boon Thau Loo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.
Declarative Networking is a programming methodology that enables developers to concisely specify network protocols and services, which are directly compiled to a dataflow framework that executes the specifications. Declarative networking proposes the use of a declarative query language for specifying and implementing network protocols, and employs a dataflow framework at runtime for communication and maintenance of network state. The primary goal of declarative networking is to greatly simplify the process of specifying, implementing, deploying and evolving a network design. In addition, declarative networking serves as an important step towards an extensible, evolvable network architecture that can support flexible, secure and efficient deployment of new network protocols. This book provides an introduction to basic issues in declarative networking, including language design, optimization and dataflow execution. The methodology behind declarative programming of networks is presented, including roots in Datalog, extensions for networked environments, and the semantics of long-running queries over network state. The book focuses on a representative declarative networking language called Network Datalog (NDlog), which is based on extensions to the Datalog recursive query language. An overview of declarative network protocols written in NDlog is provided, and its usage is illustrated using examples from routing protocols and overlay networks. This book also describes the implementation of a declarative networking engine and NDlog execution strategies that provide eventual consistency semantics with significant flexibility in execution. Two representative declarative networking systems (P2 and its successor RapidNet) are presented. Finally, the book highlights recent advances in declarative networking, and new declarative approaches to related problems. Table of Contents: Introduction / Declarative Networking Language / Declarative Networking Overview / Distributed Recursive Query Processing / Declarative Routing / Declarative Overlays / Optimization of NDlog / Recent Advances in Declarative Networking / Conclusion
Instant Recovery With Write Ahead Logging
DOWNLOAD
Author : Goetz Graefe
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Instant Recovery With Write Ahead Logging written by Goetz Graefe and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.
Traditional theory and practice of write-ahead logging and of database recovery focus on three failure classes: transaction failures (typically due to deadlocks) resolved by transaction rollback; system failures (typically power or software faults) resolved by restart with log analysis, "redo," and "undo" phases; and media failures (typically hardware faults) resolved by restore operations that combine multiple types of backups and log replay. The recent addition of single-page failures and single-page recovery has opened new opportunities far beyond the original aim of immediate, lossless repair of single-page wear-out in novel or traditional storage hardware. In the contexts of system and media failures, efficient single-page recovery enables on-demand incremental "redo" and "undo" as part of system restart or media restore operations. This can give the illusion of practically instantaneous restart and restore: instant restart permits processing new queries and updates seconds after system reboot and instant restore permits resuming queries and updates on empty replacement media as if those were already fully recovered. In the context of node and network failures, instant restart and instant restore combine to enable practically instant failover from a failing database node to one holding merely an out-of-date backup and a log archive, yet without loss of data, updates, or transactional integrity. In addition to these instant recovery techniques, the discussion introduces self-repairing indexes and much faster offline restore operations, which impose no slowdown in backup operations and hardly any slowdown in log archiving operations. The new restore techniques also render differential and incremental backups obsolete, complete backup commands on a database server practically instantly, and even permit taking full up-to-date backups without imposing any load on the database server. Compared to the first version of this book, this second edition adds sections on applications of single-page repair, instant restart, single-pass restore, and instant restore. Moreover, it adds sections on instant failover among nodes in a cluster, applications of instant failover, recovery for file systems and data files, and the performance of instant restart and instant restore.
Information And Influence Propagation In Social Networks
DOWNLOAD
Author : Wei Chen
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Information And Influence Propagation In Social Networks written by Wei Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.
Research on social networks has exploded over the last decade. To a large extent, this has been fueled by the spectacular growth of social media and online social networking sites, which continue growing at a very fast pace, as well as by the increasing availability of very large social network datasets for purposes of research. A rich body of this research has been devoted to the analysis of the propagation of information, influence, innovations, infections, practices and customs through networks. Can we build models to explain the way these propagations occur? How can we validate our models against any available real datasets consisting of a social network and propagation traces that occurred in the past? These are just some questions studied by researchers in this area. Information propagation models find applications in viral marketing, outbreak detection, finding key blog posts to read in order to catch important stories, finding leaders or trendsetters, information feed ranking, etc. A number of algorithmic problems arising in these applications have been abstracted and studied extensively by researchers under the garb of influence maximization. This book starts with a detailed description of well-established diffusion models, including the independent cascade model and the linear threshold model, that have been successful at explaining propagation phenomena. We describe their properties as well as numerous extensions to them, introducing aspects such as competition, budget, and time-criticality, among many others. We delve deep into the key problem of influence maximization, which selects key individuals to activate in order to influence a large fraction of a network. Influence maximization in classic diffusion models including both the independent cascade and the linear threshold models is computationally intractable, more precisely #P-hard, and we describe several approximation algorithms and scalable heuristics that have been proposed in the literature. Finally, we also deal with key issues that need to be tackled in order to turn this research into practice, such as learning the strength with which individuals in a network influence each other, as well as the practical aspects of this research including the availability of datasets and software tools for facilitating research. We conclude with a discussion of various research problems that remain open, both from a technical perspective and from the viewpoint of transferring the results of research into industry strength applications.
Perspectives On Business Intelligence
DOWNLOAD
Author : Raymond T. Ng
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Perspectives On Business Intelligence written by Raymond T. Ng and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.
In the 1980s, traditional Business Intelligence (BI) systems focused on the delivery of reports that describe the state of business activities in the past, such as for questions like "How did our sales perform during the last quarter?" A decade later, there was a shift to more interactive content that presented how the business was performing at the present time, answering questions like "How are we doing right now?" Today the focus of BI users are looking into the future. "Given what I did before and how I am currently doing this quarter, how will I do next quarter?" Furthermore, fuelled by the demands of Big Data, BI systems are going through a time of incredible change. Predictive analytics, high volume data, unstructured data, social data, mobile, consumable analytics, and data visualization are all examples of demands and capabilities that have become critical within just the past few years, and are growing at an unprecedented pace. This book introduces research problems and solutions on various aspects central to next-generation BI systems. It begins with a chapter on an industry perspective on how BI has evolved, and discusses how game-changing trends have drastically reshaped the landscape of BI. One of the game changers is the shift toward the consumerization of BI tools. As a result, for BI tools to be successfully used by business users (rather than IT departments), the tools need a business model, rather than a data model. One chapter of the book surveys four different types of business modeling. However, even with the existence of a business model for users to express queries, the data that can meet the needs are still captured within a data model. The next chapter on vivification addresses the problem of closing the gap, which is often significant, between the business and the data models. Moreover, Big Data forces BI systems to integrate and consolidate multiple, and often wildly different, data sources. One chapter gives an overview of several integration architectures for dealing with the challenges that need to be overcome. While the book so far focuses on the usual structured relational data, the remaining chapters turn to unstructured data, an ever-increasing and important component of Big Data. One chapter on information extraction describes methods for dealing with the extraction of relations from free text and the web. Finally, BI users need tools to visualize and interpret new and complex types of information in a way that is compelling, intuitive, but accurate. The last chapter gives an overview of information visualization for decision support and text.
Data Profiling
DOWNLOAD
Author : Ziawasch Abedjan
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Data Profiling written by Ziawasch Abedjan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.
Data profiling refers to the activity of collecting data about data, {i.e.}, metadata. Most IT professionals and researchers who work with data have engaged in data profiling, at least informally, to understand and explore an unfamiliar dataset or to determine whether a new dataset is appropriate for a particular task at hand. Data profiling results are also important in a variety of other situations, including query optimization, data integration, and data cleaning. Simple metadata are statistics, such as the number of rows and columns, schema and datatype information, the number of distinct values, statistical value distributions, and the number of null or empty values in each column. More complex types of metadata are statements about multiple columns and their correlation, such as candidate keys, functional dependencies, and other types of dependencies. This book provides a classification of the various types of profilable metadata, discusses popular data profiling tasks,and surveys state-of-the-art profiling algorithms. While most of the book focuses on tasks and algorithms for relational data profiling, we also briefly discuss systems and techniques for profiling non-relational data such as graphs and text. We conclude with a discussion of data profiling challenges and directions for future work in this area.