[PDF] Pseudo Differential Operators And The Nash Moser Theorem - eBooks Review

Pseudo Differential Operators And The Nash Moser Theorem


Pseudo Differential Operators And The Nash Moser Theorem
DOWNLOAD

Download Pseudo Differential Operators And The Nash Moser Theorem PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pseudo Differential Operators And The Nash Moser Theorem book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Pseudo Differential Operators And The Nash Moser Theorem


Pseudo Differential Operators And The Nash Moser Theorem
DOWNLOAD
Author : Patrick Gérard
language : en
Publisher: American Mathematical Soc.
Release Date :

Pseudo Differential Operators And The Nash Moser Theorem written by Patrick Gérard and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


"An important feature is the elementary and self-contained character of the text, to which many exercises and an introductory Chapter 0 with basic material have been added. This makes the book readable by graduate students or researchers from one subject who are interested in becoming familiar with the other. It can also be used as a textbook for a graduate course on nonlinear PDE or geometry."--BOOK JACKET.



Pseudo Differential Operators And The Nash Moser Theorem


Pseudo Differential Operators And The Nash Moser Theorem
DOWNLOAD
Author : Serge Alinhac
language : en
Publisher: American Mathematical Soc.
Release Date : 2007

Pseudo Differential Operators And The Nash Moser Theorem written by Serge Alinhac and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.


This book presents two essential and apparently unrelated subjects. The first, microlocal analysis and the theory of pseudo-differential operators, is a basic tool in the study of partial differential equations and in analysis on manifolds. The second, the Nash-Moser theorem, continues to be fundamentally important in geometry, dynamical systems and nonlinear PDE. Each of the subjects, which are of interest in their own right as well as for applications, can be learned separately. But the book shows the deep connections between the two themes, particularly in the middle part, which is devoted to Littlewood-Paley theory, dyadic analysis, and the paradifferential calculus and its application to interpolation inequalities. An important feature is the elementary and self-contained character of the text, to which many exercises and an introductory Chapter $0$ with basic material have been added. This makes the book readable by graduate students or researchers from one subject who are interested in becoming familiar with the other. It can also be used as a textbook for a graduate course on nonlinear PDE or geometry.



Manifolds And Differential Geometry


Manifolds And Differential Geometry
DOWNLOAD
Author : Jeffrey M. Lee
language : en
Publisher: American Mathematical Society
Release Date : 2022-03-08

Manifolds And Differential Geometry written by Jeffrey M. Lee and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-08 with Mathematics categories.


Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hypersurfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.



Anomalies In Partial Differential Equations


Anomalies In Partial Differential Equations
DOWNLOAD
Author : Massimo Cicognani
language : en
Publisher: Springer Nature
Release Date : 2021-02-03

Anomalies In Partial Differential Equations written by Massimo Cicognani and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-03 with Mathematics categories.


The contributions contained in the volume, written by leading experts in their respective fields, are expanded versions of talks given at the INDAM Workshop "Anomalies in Partial Differential Equations" held in September 2019 at the Istituto Nazionale di Alta Matematica, Dipartimento di Matematica "Guido Castelnuovo", Università di Roma "La Sapienza". The volume contains results for well-posedness and local solvability for linear models with low regular coefficients. Moreover, nonlinear dispersive models (damped waves, p-evolution models) are discussed from the point of view of critical exponents, blow-up phenomena or decay estimates for Sobolev solutions. Some contributions are devoted to models from applications as traffic flows, Einstein-Euler systems or stochastic PDEs as well. Finally, several contributions from Harmonic and Time-Frequency Analysis, in which the authors are interested in the action of localizing operators or the description of wave front sets, complete the volume.



Continuous Time Markov Processes


Continuous Time Markov Processes
DOWNLOAD
Author : Thomas Milton Liggett
language : en
Publisher: American Mathematical Soc.
Release Date : 2010

Continuous Time Markov Processes written by Thomas Milton Liggett and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.


Markov processes are among the most important stochastic processes for both theory and applications. This book develops the general theory of these processes, and applies this theory to various special examples.



An Epsilon Of Room I Real Analysis


An Epsilon Of Room I Real Analysis
DOWNLOAD
Author : Terence Tao
language : en
Publisher: American Mathematical Society
Release Date : 2022-11-16

An Epsilon Of Room I Real Analysis written by Terence Tao and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-16 with Mathematics categories.


In 2007 Terry Tao began a mathematical blog to cover a variety of topics, ranging from his own research and other recent developments in mathematics, to lecture notes for his classes, to nontechnical puzzles and expository articles. The first two years of the blog have already been published by the American Mathematical Society. The posts from the third year are being published in two volumes. The present volume consists of a second course in real analysis, together with related material from the blog. The real analysis course assumes some familiarity with general measure theory, as well as fundamental notions from undergraduate analysis. The text then covers more advanced topics in measure theory, notably the Lebesgue-Radon-Nikodym theorem and the Riesz representation theorem, topics in functional analysis, such as Hilbert spaces and Banach spaces, and the study of spaces of distributions and key function spaces, including Lebesgue's $L^p$ spaces and Sobolev spaces. There is also a discussion of the general theory of the Fourier transform. The second part of the book addresses a number of auxiliary topics, such as Zorn's lemma, the Carathéodory extension theorem, and the Banach-Tarski paradox. Tao also discusses the epsilon regularisation argument—a fundamental trick from soft analysis, from which the book gets its title. Taken together, the book presents more than enough material for a second graduate course in real analysis. The second volume consists of technical and expository articles on a variety of topics and can be read independently.



Mapping Degree Theory


Mapping Degree Theory
DOWNLOAD
Author : Enrique Outerelo
language : en
Publisher: American Mathematical Soc.
Release Date : 2009-11-12

Mapping Degree Theory written by Enrique Outerelo and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-12 with Mathematics categories.


This textbook treats the classical parts of mapping degree theory, with a detailed account of its history traced back to the first half of the 18th century. After a historical first chapter, the remaining four chapters develop the mathematics. An effort is made to use only elementary methods, resulting in a self-contained presentation. Even so, the book arrives at some truly outstanding theorems: the classification of homotopy classes for spheres and the Poincare-Hopf Index Theorem, as well as the proofs of the original formulations by Cauchy, Poincare, and others. Although the mapping degree theory you will discover in this book is a classical subject, the treatment is refreshing for its simple and direct style. The straightforward exposition is accented by the appearance of several uncommon topics: tubular neighborhoods without metrics, differences between class 1 and class 2 mappings, Jordan Separation with neither compactness nor cohomology, explicit constructions of homotopy classes of spheres, and the direct computation of the Hopf invariant of the first Hopf fibration. The book is suitable for a one-semester graduate course. There are 180 exercises and problems of different scope and difficulty.



A Course In Approximation Theory


A Course In Approximation Theory
DOWNLOAD
Author : Elliott Ward Cheney
language : en
Publisher: American Mathematical Soc.
Release Date : 2009-01-13

A Course In Approximation Theory written by Elliott Ward Cheney and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-13 with Mathematics categories.


This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.



Pseudodifferential Operators And Nonlinear Pde


Pseudodifferential Operators And Nonlinear Pde
DOWNLOAD
Author : Michael Taylor
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Pseudodifferential Operators And Nonlinear Pde written by Michael Taylor and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. This book is devoted to a summary and reconsideration of some used of pseudodifferential operator techniques in nonlinear PDE. One goal has been to build a bridge between two approaches which have been used in a number of papers written in the last decade, one being the theory of paradifferential operators, pioneered by Bony and Meyer, the other the study of pseudodifferential operators whose symbols have limited regularity. The latter approach is a natural successor to classical devices of deriving estimates for linear PDE whose coefficients have limited regularity in order to obtain results in nonlinear PDE. After developing the requisite tools, we proceed to demonstrate their effectiveness on a range of basic topics in nonlinear PDE. For example, for hyperbolic systems, known sufficient conditions for persistence of solutions are both sharpened and extended in scope. In the treatment of parabolic equations and elliptic boundary problems, it is shown that the results obtained here interface particularly easily with the DeGiorgi-Nash-Moser theory, when that theory applies. To make the work reasonable self-contained, there are appendices treating background topics in harmonic analysis and the DeGiorgi-Nash-Moser theory, as well as an introductory chapter on pseudodifferential operators as developed for linear PDE. The book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.



Discrete Differential Geometry


Discrete Differential Geometry
DOWNLOAD
Author : Alexander I. Bobenko
language : en
Publisher: American Mathematical Society
Release Date : 2023-09-14

Discrete Differential Geometry written by Alexander I. Bobenko and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-14 with Mathematics categories.


An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.