Python Gpt Cookbook

DOWNLOAD
Download Python Gpt Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Gpt Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Python Gpt Cookbook
DOWNLOAD
Author : Dr. Neil Williams
language : en
Publisher: BPB Publications
Release Date : 2025-03-19
Python Gpt Cookbook written by Dr. Neil Williams and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-19 with Computers categories.
DESCRIPTION GPT has redefined the landscape of AI, enabling the creation of powerful language models capable of diverse applications. The objective of the Python GPT Cookbook is to equip readers with practical recipes and foundational knowledge to build business solutions using GPT and Python. The book is divided into four parts. The first covers the basics, the second teaches the fundamentals of NLP, the third delves into applying GPT in various fields, and the fourth provides a conclusion. Each chapter includes recipes and practical insights to help readers deepen their understanding and apply the concepts presented. This cookbook approach delivers 78 practical recipes, including creating OpenAI accounts, utilizing playgrounds and API keys. You will learn text preprocessing, embeddings, fine-tuning, and GPT integration with Hugging Face. Learn to implement GPT using PyTorch and TensorFlow, convert models, and build authenticated actions. Applications include chatbots, email summarization, DBA copilots, and use cases in marketing, sales, IP, and manufacturing. By the end of the book, readers will have a robust understanding of GPT models and how to use them for real-world NLP tasks, along with the skills to continue exploring this powerful technology independently. WHAT YOU WILL LEARN ● Learn Python, OpenAI, TensorFlow, Hugging Face, and vector databases. ● Master Python for NLP applications and data manipulation. ● Understand and implement GPT models for various tasks. ● Integrate GPT with various architectural components, such as databases, third-party APIs, servers, and data pipelines ● Utilise NLTK, PyTorch, and TensorFlow for advanced NLP projects. ● Use Jupyter for interactive coding and data analysis. WHO THIS BOOK IS FOR The Python GPT Cookbook is for IT professionals and business innovators who already have basic Python skills. Data scientists, ML engineers, NLP engineers, and ML researchers will also find it useful. TABLE OF CONTENTS 1. Introduction to GPT 2. Crafting Your GPT Workspace 3. Pre-processing 4. Embeddings 5. Classifying Intent 6. Hugging Face and GPT 7. Vector Databases 8. GPT, PyTorch, and TensorFlow 9. Custom GPT Actions 10. Integrating GPT with the Enterprise 11. Marketing and Sales with GPT 12. Intellectual Property Management with GPT 13. GPT in Manufacturing 14. Scaling up 15. Emerging Trends and Future Directions
Python Natural Language Processing Cookbook
DOWNLOAD
Author : Zhenya Antić
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-09-13
Python Natural Language Processing Cookbook written by Zhenya Antić and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-13 with Computers categories.
Updated to include three new chapters on transformers, natural language understanding (NLU) with explainable AI, and dabbling with popular LLMs from Hugging Face and OpenAI Key Features Leverage ready-to-use recipes with the latest LLMs, including Mistral, Llama, and OpenAI models Use LLM-powered agents for custom tasks and real-world interactions Gain practical, in-depth knowledge of transformers and their role in implementing various NLP tasks with open-source and advanced LLMs Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionHarness the power of Natural Language Processing (NLP) to overcome real-world text analysis challenges with this recipe-based roadmap written by two seasoned NLP experts with vast experience transforming various industries with their NLP prowess. You’ll be able to make the most of the latest NLP advancements, including large language models (LLMs), and leverage their capabilities through Hugging Face transformers. Through a series of hands-on recipes, you’ll master essential techniques such as extracting entities and visualizing text data. The authors will expertly guide you through building pipelines for sentiment analysis, topic modeling, and question-answering using popular libraries like spaCy, Gensim, and NLTK. You’ll also learn to implement RAG pipelines to draw out precise answers from a text corpus using LLMs. This second edition expands your skillset with new chapters on cutting-edge LLMs like GPT-4, Natural Language Understanding (NLU), and Explainable AI (XAI)—fostering trust in your NLP models. By the end of this book, you'll be equipped with the skills to apply advanced text processing techniques, use pre-trained transformer models, build custom NLP pipelines to extract valuable insights from text data to drive informed decision-making.What you will learn Understand fundamental NLP concepts along with their applications using examples in Python Classify text quickly and accurately with rule-based and supervised methods Train NER models and perform sentiment analysis to identify entities and emotions in text Explore topic modeling and text visualization to reveal themes and relationships within text Leverage Hugging Face and OpenAI LLMs to perform advanced NLP tasks Use question-answering techniques to handle both open and closed domains Apply XAI techniques to better understand your model predictions Who this book is for This updated edition of the Python Natural Language Processing Cookbook is for data scientists, machine learning engineers, and developers with a background in Python. Whether you’re looking to learn NLP techniques, extract valuable insights from textual data, or create foundational applications, this book will equip you with basic to intermediate skills. No prior NLP knowledge is necessary to get started. All you need is familiarity with basic programming principles. For seasoned developers, the updated sections offer the latest on transformers, explainable AI, and Generative AI with LLMs.
Artificial Intelligence With Python Cookbook
DOWNLOAD
Author : Ben Auffarth
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-10-30
Artificial Intelligence With Python Cookbook written by Ben Auffarth and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-30 with Computers categories.
Work through practical recipes to learn how to solve complex machine learning and deep learning problems using Python Key FeaturesGet up and running with artificial intelligence in no time using hands-on problem-solving recipesExplore popular Python libraries and tools to build AI solutions for images, text, sounds, and imagesImplement NLP, reinforcement learning, deep learning, GANs, Monte-Carlo tree search, and much moreBook Description Artificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research. Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you’ll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you’ll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems. By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production. What you will learnImplement data preprocessing steps and optimize model hyperparametersDelve into representational learning with adversarial autoencodersUse active learning, recommenders, knowledge embedding, and SAT solversGet to grips with probabilistic modeling with TensorFlow probabilityRun object detection, text-to-speech conversion, and text and music generationApply swarm algorithms, multi-agent systems, and graph networksGo from proof of concept to production by deploying models as microservicesUnderstand how to use modern AI in practiceWho this book is for This AI machine learning book is for Python developers, data scientists, machine learning engineers, and deep learning practitioners who want to learn how to build artificial intelligence solutions with easy-to-follow recipes. You’ll also find this book useful if you’re looking for state-of-the-art solutions to perform different machine learning tasks in various use cases. Basic working knowledge of the Python programming language and machine learning concepts will help you to work with code effectively in this book.
Chatgpt For Cybersecurity Cookbook
DOWNLOAD
Author : Clint Bodungen
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-03-29
Chatgpt For Cybersecurity Cookbook written by Clint Bodungen and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-29 with Computers categories.
Master ChatGPT and the OpenAI API and harness the power of cutting-edge generative AI and large language models to revolutionize the way you perform penetration testing, threat detection, and risk assessment. Get With Your Book: PDF Copy, AI Assistant, and Next-Gen Reader Free Key Features Enhance your skills by leveraging ChatGPT to generate complex commands, write code, and create tools Automate penetration testing, risk assessment, and threat detection tasks using the OpenAI API and Python programming Revolutionize your approach to cybersecurity with an AI-powered toolkit Book DescriptionAre you ready to unleash the potential of AI-driven cybersecurity? This cookbook takes you on a journey toward enhancing your cybersecurity skills, whether you’re a novice or a seasoned professional. By leveraging cutting-edge generative AI and large language models such as ChatGPT, you'll gain a competitive advantage in the ever-evolving cybersecurity landscape. ChatGPT for Cybersecurity Cookbook shows you how to automate and optimize various cybersecurity tasks, including penetration testing, vulnerability assessments, risk assessment, and threat detection. Each recipe demonstrates step by step how to utilize ChatGPT and the OpenAI API to generate complex commands, write code, and even create complete tools. You’ll discover how AI-powered cybersecurity can revolutionize your approach to security, providing you with new strategies and techniques for tackling challenges. As you progress, you’ll dive into detailed recipes covering attack vector automation, vulnerability scanning, GPT-assisted code analysis, and more. By learning to harness the power of generative AI, you'll not only expand your skillset but also increase your efficiency. By the end of this cybersecurity book, you’ll have the confidence and knowledge you need to stay ahead of the curve, mastering the latest generative AI tools and techniques in cybersecurity.What you will learn Master ChatGPT prompt engineering for complex cybersecurity tasks Use the OpenAI API to enhance and automate penetration testing Implement artificial intelligence-driven vulnerability assessments and risk analyses Automate threat detection with the OpenAI API Develop custom AI-enhanced cybersecurity tools and scripts Perform AI-powered cybersecurity training and exercises Optimize cybersecurity workflows using generative AI-powered techniques Who this book is for This book is for cybersecurity professionals, IT experts, and enthusiasts looking to harness the power of ChatGPT and the OpenAI API in their cybersecurity operations. Whether you're a red teamer, blue teamer, or security researcher, this book will help you revolutionize your approach to cybersecurity with generative AI-powered techniques. A basic understanding of cybersecurity concepts along with familiarity in Python programming is expected. Experience with command-line tools and basic knowledge of networking concepts and web technologies is also required.
Python Digital Forensics Cookbook
DOWNLOAD
Author : Preston Miller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-09-26
Python Digital Forensics Cookbook written by Preston Miller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-26 with Computers categories.
Over 60 recipes to help you learn digital forensics and leverage Python scripts to amplify your examinations About This Book Develop code that extracts vital information from everyday forensic acquisitions. Increase the quality and efficiency of your forensic analysis. Leverage the latest resources and capabilities available to the forensic community. Who This Book Is For If you are a digital forensics examiner, cyber security specialist, or analyst at heart, understand the basics of Python, and want to take it to the next level, this is the book for you. Along the way, you will be introduced to a number of libraries suitable for parsing forensic artifacts. Readers will be able to use and build upon the scripts we develop to elevate their analysis. What You Will Learn Understand how Python can enhance digital forensics and investigations Learn to access the contents of, and process, forensic evidence containers Explore malware through automated static analysis Extract and review message contents from a variety of email formats Add depth and context to discovered IP addresses and domains through various Application Program Interfaces (APIs) Delve into mobile forensics and recover deleted messages from SQLite databases Index large logs into a platform to better query and visualize datasets In Detail Technology plays an increasingly large role in our daily lives and shows no sign of stopping. Now, more than ever, it is paramount that an investigator develops programming expertise to deal with increasingly large datasets. By leveraging the Python recipes explored throughout this book, we make the complex simple, quickly extracting relevant information from large datasets. You will explore, develop, and deploy Python code and libraries to provide meaningful results that can be immediately applied to your investigations. Throughout the Python Digital Forensics Cookbook, recipes include topics such as working with forensic evidence containers, parsing mobile and desktop operating system artifacts, extracting embedded metadata from documents and executables, and identifying indicators of compromise. You will also learn to integrate scripts with Application Program Interfaces (APIs) such as VirusTotal and PassiveTotal, and tools such as Axiom, Cellebrite, and EnCase. By the end of the book, you will have a sound understanding of Python and how you can use it to process artifacts in your investigations. Style and approach Our succinct recipes take a no-frills approach to solving common challenges faced in investigations. The code in this book covers a wide range of artifacts and data sources. These examples will help improve the accuracy and efficiency of your analysis—no matter the situation.
Machine Learning With Python Cookbook
DOWNLOAD
Author : Kyle Gallatin
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2023-07-27
Machine Learning With Python Cookbook written by Kyle Gallatin and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-27 with Computers categories.
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naäve Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks
Flask Framework Cookbook
DOWNLOAD
Author : Shalabh Aggarwal
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-07-28
Flask Framework Cookbook written by Shalabh Aggarwal and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-28 with Computers categories.
Design and deploy robust state-of-the-art web applications using Flask 2.x and Python 3 frameworks and libraries for streamlined development and optimal performance Purchase of the print or Kindle book includes a free PDF eBook Key Features A practical and rich companion guide for web developers, offering real-world situations and use cases to learn Flask Get the most out of the powerful Flask framework while preserving the flexibility of your design choices Write cleaner, testable, and maintainable code with the help of sample apps Book DescriptionDiscover what makes Flask, the lightweight Python web framework, popular, as you delve into its modular design that enables the development of scalable web apps. With this practical guide, you'll explore modern solutions, recommended design patterns, and best practices for Flask web development. Updated to the latest version of Flask and Python, this third edition of the Flask Framework Cookbook moves away from the outdated libraries, updates content to incorporate new coding patterns, and introduces recipes for the latest tools. You'll explore different ways to integrate with GPT to build AI-ready Flask applications. The book starts with an exploration of Flask application configurations and then guides you through working with templates and understanding the ORM and view layers. You’ll also be able to write an admin interface and get to grips with testing using the factory pattern, debugging, and logging errors. Then you’ll discover different ways of using Flask to create, deploy, and manage microservices using AWS, GCP, and Kubernetes. Finally, you’ll gain insights into various deployment and post-deployment techniques for platforms such as Apache, Tornado, and Datadog. By the end of this book, you'll have acquired the knowledge necessary to write Flask applications that cater to a wide range of use cases in the best possible way and scale them using standard industry practices.What you will learn Explore advanced templating and data modeling techniques Discover effective debugging, logging, and error-handling techniques in Flask Work with different types of databases, including RDBMS and NoSQL Integrate Flask with different technologies such as Redis, Sentry, and Datadog Deploy and package Flask applications with Docker and Kubernetes Integrate GPT with your Flask application to build future-ready platforms Implement continuous integration and continuous deployment (CI/CD) to ensure efficient and consistent updates to your Flask web applications Who this book is forIf you are a web developer seeking to expand your knowledge of developing scalable and production-ready applications in Flask, this is the book for you. It is also highly valuable if you are already aware of Flask's major extensions and want to leverage them for better application development. This book will come handy as a quick reference for specific topic on Flask, its popular extensions, or specific use cases. It assumes basic Python programming experience, as well as familiarity with web development and related terminology.
Pandas Cookbook
DOWNLOAD
Author : Theodore Petrou
language : en
Publisher:
Release Date : 2017-10-23
Pandas Cookbook written by Theodore Petrou and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-23 with Computers categories.
Over 95 hands-on recipes to leverage the power of pandas for efficient scientific computation and data analysisAbout This Book* Use the power of pandas to solve most complex scientific computing problems with ease* Leverage fast, robust data structures in pandas to gain useful insights from your data* Practical, easy to implement recipes for quick solutions to common problems in data using pandasWho This Book Is ForThis book is for data scientists, analysts and Python developers who wish to explore data analysis and scientific computing in a practical, hands-on manner. The recipes included in this book are suitable for both novice and advanced users, and contain helpful tips, tricks and caveats wherever necessary. Some understanding of pandas will be helpful, but not mandatory.What You Will Learn* Master the fundamentals of pandas to quickly begin exploring any dataset* Isolate any subset of data by properly selecting and querying the data* Split data into independent groups before applying aggregations and transformations to each group* Restructure data into tidy form to make data analysis and visualization easier* Prepare real-world messy datasets for machine learning* Combine and merge data from different sources through pandas SQL-like operations* Utilize pandas unparalleled time series functionality* Create beautiful and insightful visualizations through pandas direct hooks to Matplotlib and SeabornIn DetailThis book will provide you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way.The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands like one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through practical situations that you are highly likely to encounter.Many advanced recipes combine several different features across the pandas library to generate results.Style and approachThe author relies on his vast experience teaching pandas in a professional setting to deliver very detailed explanations for each line of code in all of the recipes. All code and dataset explanations exist in Jupyter Notebooks, an excellent interface for exploring data.
Machine Learning With Amazon Sagemaker Cookbook
DOWNLOAD
Author : Joshua Arvin Lat
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-10-29
Machine Learning With Amazon Sagemaker Cookbook written by Joshua Arvin Lat and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-29 with Computers categories.
A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker Key FeaturesPerform ML experiments with built-in and custom algorithms in SageMakerExplore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learnUse the different features and capabilities of SageMaker to automate relevant ML processesBook Description Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems. This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams. By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems. What you will learnTrain and deploy NLP, time series forecasting, and computer vision models to solve different business problemsPush the limits of customization in SageMaker using custom container imagesUse AutoML capabilities with SageMaker Autopilot to create high-quality modelsWork with effective data analysis and preparation techniquesExplore solutions for debugging and managing ML experiments and deploymentsDeal with bias detection and ML explainability requirements using SageMaker ClarifyAutomate intermediate and complex deployments and workflows using a variety of solutionsWho this book is for This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
Python 3 And Data Visualization Using Chatgpt Gpt 4
DOWNLOAD
Author : Oswald Campesato
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2023-12-15
Python 3 And Data Visualization Using Chatgpt Gpt 4 written by Oswald Campesato and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-15 with Computers categories.
This book is designed to show readers the concepts of Python 3 programming and the art of data visualization. It also explores cutting-edge techniques using ChatGPT/GPT-4 in harmony with Python for generating visuals that tell more compelling data stories. Chapter 1 introduces the essentials of Python, covering a vast array of topics from basic data types, loops, and functions to more advanced constructs like dictionaries, sets, and matrices. In Chapter 2, the focus shifts to NumPy and its powerful array operations, leading into data visualization using prominent libraries such as Matplotlib. Chapter 6 includes Seaborn's rich visualization tools, offering insights into datasets like Iris and Titanic. Further, the book covers other visualization tools and techniques, including SVG graphics, D3 for dynamic visualizations, and more. Chapter 7 covers information about the main features of ChatGPT and GPT-4, as well as some of their competitors. Chapter 8 contains examples of using ChatGPT in order to perform data visualization, such as charts and graphs that are based on datasets (e.g., the Titanic dataset). Companion files with code, datasets, and figures are available for downloading. From foundational Python concepts to the intricacies of data visualization, this book is ideal for Python practitioners, data scientists, and anyone in the field of data analytics looking to enhance their storytelling with data through visuals. It's also perfect for educators seeking material for teaching advanced data visualization techniques.