Python Machine Learning From Scratch

DOWNLOAD
Download Python Machine Learning From Scratch PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Machine Learning From Scratch book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Deep Learning From Scratch
DOWNLOAD
Author : Seth Weidman
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-09
Deep Learning From Scratch written by Seth Weidman and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-09 with Computers categories.
With the resurgence of neural networks in the 2010s, deep learning has become essential for machine learning practitioners and even many software engineers. This book provides a comprehensive introduction for data scientists and software engineers with machine learning experience. You’ll start with deep learning basics and move quickly to the details of important advanced architectures, implementing everything from scratch along the way. Author Seth Weidman shows you how neural networks work using a first principles approach. You’ll learn how to apply multilayer neural networks, convolutional neural networks, and recurrent neural networks from the ground up. With a thorough understanding of how neural networks work mathematically, computationally, and conceptually, you’ll be set up for success on all future deep learning projects. This book provides: Extremely clear and thorough mental models—accompanied by working code examples and mathematical explanations—for understanding neural networks Methods for implementing multilayer neural networks from scratch, using an easy-to-understand object-oriented framework Working implementations and clear-cut explanations of convolutional and recurrent neural networks Implementation of these neural network concepts using the popular PyTorch framework
Python Machine Learning From Scratch
DOWNLOAD
Author : Daniel Nedal
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-07-24
Python Machine Learning From Scratch written by Daniel Nedal and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-24 with categories.
***BUY NOW (Will soon return to 20.59) ******Free eBook for customers who purchase the print book from Amazon*** Are you thinking of learning more about Machine Learning using Python? This book would seek to explain common terms and algorithms in an intuitive way. The author used a progressive approach whereby we start out slowly and improve on the complexity of our solutions. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses. To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using machine learning. Instead of tough math formulas, this book contains several graphs and images which detail all important Machine Learning concepts and their applications. Target Users The book designed for a variety of target audiences. The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Supervised Learning Algorithms Unsupervised Learning Algorithms Semi-supervised Learning Algorithms Reinforcement Learning Algorithms Overfitting and underfitting correctness The Bias-Variance Trade-off Feature Extraction and Selection A Regression Example: Predicting Boston Housing Prices Import Libraries: How to forecast and Predict Popular Classification Algorithms Introduction to K Nearest Neighbors Introduction to Support Vector Machine Example of Clustering Running K-means with Scikit-Learn Introduction to Deep Learning using TensorFlow Deep Learning Compared to Other Machine Learning Approaches Applications of Deep Learning How to run the Neural Network using TensorFlow Cases of Study with Real Data Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: If you want to smash Machine Learning from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Does this book include everything I need to become a Machine Learning expert? A: Unfortunately, no. This book is designed for readers taking their first steps in Machine Learning and further learning will be required beyond this book to master all aspects of Machine Learning. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected]. If you need to see the quality of our job, AI Sciences Company offering you a free eBook in Machine Learning with Python written by the data scientist Alain Kaufmann at http: //aisciences.net/free-books/
Python Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-09-23
Python Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-23 with Computers categories.
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
Python Machine Learning From Scratch
DOWNLOAD
Author : Jonathan Adam
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2016-08-24
Python Machine Learning From Scratch written by Jonathan Adam and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-24 with categories.
***** BUY NOW (will soon return to 25.89 $)******Free eBook for customers who purchase the print book from Amazon****** Are you thinking of learning more about Machine Learning using Python? (For Beginners) This book would seek to explain common terms and algorithms in an intuitive way. The author used a progressive approach whereby we start out slowly and improve on the complexity of our solutions. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations. Step By Step Guide and Visual Illustrations and Examples This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using machine learning.Instead of tough math formulas, this book contains several graphs and images which detail all important Machine Learning concepts and their applications. Target Users The book designed for a variety of target audiences. The most suitable users would include: Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Supervised Learning Algorithms Unsupervised Learning Algorithms Semi-supervised Learning Algorithms Reinforcement Learning Algorithms Overfitting and underfitting correctness The Bias-Variance Trade-off Feature Extraction and Selection A Regression Example: Predicting Boston Housing Prices Import Libraries: How to forecast and Predict Popular Classification Algorithms Introduction to K Nearest Neighbors Introduction to Support Vector Machine Example of Clustering Running K-means with Scikit-Learn Introduction to Deep Learning using TensorFlow Deep Learning Compared to Other Machine Learning Approaches Applications of Deep Learning How to run the Neural Network using TensorFlow Cases of Study with Real Data Sources & References Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: If you want to smash Machine Learning from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK.Q: Does this book include everything I need to become a Machine Learning expert?A: Unfortunately, no. This book is designed for readers taking their first steps in Machine Learning and further learning will be required beyond this book to master all aspects of Machine Learning.Q: Can I have a refund if this book is not fitted for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at [email protected] Sciences Company offers you a free eBooks at http://aisciences.net/free/
Machine Learning With Pytorch And Scikit Learn
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-02-25
Machine Learning With Pytorch And Scikit Learn written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-25 with Computers categories.
This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
Python Programming For Beginners
DOWNLOAD
Author : Chris Sebastian
language : en
Publisher: Python, Machine Learning
Release Date : 2019-01-24
Python Programming For Beginners written by Chris Sebastian and has been published by Python, Machine Learning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-24 with Education categories.
♦♦Bonus: Buy the Paperback version of this book, and get the kindle eBook version included for FREE** If you have been trying to learn the Python program for some time now and you have decided this is the time, Python for Beginners is the book that you should get. Start as a beginner and finish as a pro. Not only because of the information that you get from the book, also because of the motivation.Learning about Python the easy way should be your motto. Most of the content that you are likely to find out there about Python is likely to leave you halfway asleep. However, even though this book has technical stuff (because it is needed), will also give you some fun facts about Python, keep you entertained ,and most importantly, informed. It is important to have a book that can guide you during your first stages of becoming a programmer. When it comes to learning about something as crucial as this, you want to make sure that the first thing you read guides you well - a book that you can refer to from time to time when you want to look into something that concerns the program. The book will give insights about the two major versions of Python that is Python 2 and 3. You will get to know their differences. You will know the importance of coding and why you need to come up with a good code. If you have been wondering how to install Python on either your Windows or Mac operating system, this is your chance to learn. You will get a step by step guide on how to program via the Tkinter tutorial. There is a lot of information on this book that will prove to be helpful.As a beginner, you will need a lot of information that will add value to your agenda. If you have a dream of one day programming a software with the Python program, don't start tomorrow - start today! It is important to have a guide that will give you useful throughout your journey. You need to stop procrastinating and start learning how to code the easy way! Start your journey once you buy this book! Inside you will find ●The difference between Python 2 and 3 and how they both work ●A step-by-step guide that will tell you how to install the program on both Windows and Mac ●The organization of the Python code ●The functions that are in Python and why you should use Python while programming ●Learn about the classes and objects in Python ●Get to know how Python code is organized and the importance of writing a good code ●This and more..... So what are you waiting for???Scroll back up and order this book NOW.
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Python Machine Learning
DOWNLOAD
Author : Moubachir Madani Fadoul
language : en
Publisher:
Release Date : 2020-05-31
Python Machine Learning written by Moubachir Madani Fadoul and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-31 with categories.
Have you always wanted to learn deep learning but are afraid it'll be too difficult for you? This book is for you.Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.Book DescriptionPython Machine Learning, is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems.Packed with clear explanations, visualizations, and working examples, the book covers most of the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, this tutorial book teaches the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow, skit-learn, Keras, and theano, this edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores analysis by giving some examples, helping you learn how to use machine learning algorithms to classify or predict documents output.This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn-Master the frameworks, models, and techniques that enable machines to 'learn' from data-Use scikit-learn for machine learning and TensorFlow for deep learning-Apply machine learning to classification, predict predict customer churning, and more-Build and train neural networks, GANs, CNN, and other models-Discover best practices for evaluating and tuning models-Predict target outcomes using optimization algorithm such as Gradient Descent algorithm analysis-Overcome challenges in deep learning algorithms by using dropout, regulation-Who This Book Is ForIf you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.Table of Contents1.Giving Computers the Ability to Learn from Data2.Training Simple ML Algorithms for Classification3.ML Classifiers Using scikit-learn4.Building Good Training Datasets - Data Preprocessing5.Compressing Data via Dimensionality Reduction6.Best Practices for Model Evaluation and Hyperparameter Tuning7.Combining Different Models for Ensemble Learning8.Predicting Continuous Target Variables with supversized learning 9.Implementing Multilayer Artificial Neural Networks10.Modeling Sequential Data Using Recurrent Neural Networks11.GANs for Synthesizing New Data...and so much more....In every chapter, you can edit the examples online
Artificial Intelligence With Python
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-01-27
Artificial Intelligence With Python written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-27 with Computers categories.
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Python Machine Learning From Scratch
DOWNLOAD
Author : Sebastian Dark
language : en
Publisher:
Release Date : 2018-11-09
Python Machine Learning From Scratch written by Sebastian Dark and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-09 with Machine learning categories.
In this book, you will find the perfect balance between the information being very thorough and being able to understand it. Although tailored for beginners, it won't contain simple and easily accessible information.