Quantization Geometry And Noncommutative Structures In Mathematics And Physics

DOWNLOAD
Download Quantization Geometry And Noncommutative Structures In Mathematics And Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantization Geometry And Noncommutative Structures In Mathematics And Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Quantization Geometry And Noncommutative Structures In Mathematics And Physics
DOWNLOAD
Author : Alexander Cardona
language : en
Publisher: Springer
Release Date : 2017-10-26
Quantization Geometry And Noncommutative Structures In Mathematics And Physics written by Alexander Cardona and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-26 with Science categories.
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.
Non Commutative Geometry In Mathematics And Physics
DOWNLOAD
Author : Giuseppe Dito
language : en
Publisher: American Mathematical Soc.
Release Date : 2008
Non Commutative Geometry In Mathematics And Physics written by Giuseppe Dito and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.
This volume represents the proceedings of the conference on Topics in Deformation Quantization and Non-Commutative Structures held in Mexico City in September 2005. It contains survey papers and original contributions by various experts in the fields of deformation quantization and non-commutative derived algebraic geometry in the interface between mathematics and physics.It also contains an article based on the XI Memorial Lectures given by M. Kontsevich, which were delivered as part of the conference.This is an excellent introductory volume for readers interested in learning about quantization as deformation, Hopf algebras, and Hodge structures in the framework of non-commutative algebraic geometry.
Noncommutative Structures In Mathematics And Physics
DOWNLOAD
Author : S. Duplij
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Noncommutative Structures In Mathematics And Physics written by S. Duplij and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
A presentation of outstanding achievements and ideas, of both eastern and western scientists, both mathematicians and physicists. Their presentations of recent work on quantum field theory, supergravity, M-theory, black holes and quantum gravity, together with research into noncommutative geometry, Hopf algebras, representation theory, categories and quantum groups, take the reader to the forefront of the latest developments. Other topics covered include supergravity and branes, supersymmetric quantum mechanics and superparticles, (super) black holes, superalgebra representations, and SUSY GUT phenomenology. Essential reading for workers in the modern methods of theoretical and mathematical physics.
Structural Aspects Of Quantum Field Theory And Noncommutative Geometry Second Edition In 2 Volumes
DOWNLOAD
Author : Gerhard Grensing
language : en
Publisher: World Scientific
Release Date : 2021-07-15
Structural Aspects Of Quantum Field Theory And Noncommutative Geometry Second Edition In 2 Volumes written by Gerhard Grensing and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-15 with Science categories.
The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.
Representation Theory Mathematical Physics And Integrable Systems
DOWNLOAD
Author : Anton Alekseev
language : en
Publisher: Springer Nature
Release Date : 2022-02-05
Representation Theory Mathematical Physics And Integrable Systems written by Anton Alekseev and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-05 with Mathematics categories.
Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.
Noncommutative Geometry Quantum Fields And Motives
DOWNLOAD
Author : Alain Connes
language : en
Publisher: American Mathematical Soc.
Release Date : 2019-03-13
Noncommutative Geometry Quantum Fields And Motives written by Alain Connes and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-13 with Mathematics categories.
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Noncommutative Geometry And Representation Theory In Mathematical Physics
DOWNLOAD
Author : Jürgen Fuchs
language : en
Publisher: American Mathematical Soc.
Release Date : 2005
Noncommutative Geometry And Representation Theory In Mathematical Physics written by Jürgen Fuchs and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.
Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful cross-fertilization of the two communities. This volume contains the plenary talks fromthe international symposium on Noncommutative Geometry and Representation Theory in Mathematical Physics held at Karlstad University (Sweden) as a satellite conference to the Fourth European Congress of Mathematics. The scope of the volume is large and its content is relevant to various scientific communities interested in noncommutative geometry and representation theory. It offers a comprehensive view of the state of affairs for these two branches of mathematical physics. The book is suitablefor graduate students and researchers interested in mathematical physics.
Symplectic Poisson And Noncommutative Geometry
DOWNLOAD
Author : Tohru Eguchi
language : en
Publisher: Cambridge University Press
Release Date : 2014-08-25
Symplectic Poisson And Noncommutative Geometry written by Tohru Eguchi and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-25 with Mathematics categories.
This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute.
An Introduction To Noncommutative Geometry
DOWNLOAD
Author : Joseph C. Várilly
language : en
Publisher: European Mathematical Society
Release Date : 2006
An Introduction To Noncommutative Geometry written by Joseph C. Várilly and has been published by European Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.
Noncommutative geometry, inspired by quantum physics, describes singular spaces by their noncommutative coordinate algebras and metric structures by Dirac-like operators. Such metric geometries are described mathematically by Connes' theory of spectral triples. These lectures, delivered at an EMS Summer School on noncommutative geometry and its applications, provide an overview of spectral triples based on examples. This introduction is aimed at graduate students of both mathematics and theoretical physics. It deals with Dirac operators on spin manifolds, noncommutative tori, Moyal quantization and tangent groupoids, action functionals, and isospectral deformations. The structural framework is the concept of a noncommutative spin geometry; the conditions on spectral triples which determine this concept are developed in detail. The emphasis throughout is on gaining understanding by computing the details of specific examples. The book provides a middle ground between a comprehensive text and a narrowly focused research monograph. It is intended for self-study, enabling the reader to gain access to the essentials of noncommutative geometry. New features since the original course are an expanded bibliography and a survey of more recent examples and applications of spectral triples.
Higher Structures In Geometry And Physics
DOWNLOAD
Author : Alberto S. Cattaneo
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-25
Higher Structures In Geometry And Physics written by Alberto S. Cattaneo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-25 with Mathematics categories.
This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. The volume is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.