[PDF] Quantum Machine Learning An Applied Approach - eBooks Review

Quantum Machine Learning An Applied Approach


Quantum Machine Learning An Applied Approach
DOWNLOAD

Download Quantum Machine Learning An Applied Approach PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantum Machine Learning An Applied Approach book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Quantum Machine Learning An Applied Approach


Quantum Machine Learning An Applied Approach
DOWNLOAD
Author : Santanu Ganguly
language : en
Publisher: Apress
Release Date : 2021-08-11

Quantum Machine Learning An Applied Approach written by Santanu Ganguly and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-11 with Computers categories.


Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research. The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost. Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms. The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author’s active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples. What You will Learn Understand and explore quantum computing and quantum machine learning, and their application in science and industry Explore various data training models utilizing quantum machine learning algorithms and Python libraries Get hands-on and familiar with applied quantum computing, including freely available cloud-based access Be familiar with techniques for training and scaling quantum neural networks Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive Who This Book Is For Data scientists, machine learning professionals, and researchers



Quantum Computing An Applied Approach


Quantum Computing An Applied Approach
DOWNLOAD
Author : Jack D. Hidary
language : en
Publisher: Springer Nature
Release Date : 2021-09-29

Quantum Computing An Applied Approach written by Jack D. Hidary and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-29 with Science categories.


This book integrates the foundations of quantum computing with a hands-on coding approach to this emerging field; it is the first to bring these elements together in an updated manner. This work is suitable for both academic coursework and corporate technical training. The second edition includes extensive updates and revisions, both to textual content and to the code. Sections have been added on quantum machine learning, quantum error correction, Dirac notation and more. This new edition benefits from the input of the many faculty, students, corporate engineering teams, and independent readers who have used the first edition. This volume comprises three books under one cover: Part I outlines the necessary foundations of quantum computing and quantum circuits. Part II walks through the canon of quantum computing algorithms and provides code on a range of quantum computing methods in current use. Part III covers the mathematical toolkit required to master quantum computing. Additional resources include a table of operators and circuit elements and a companion GitHub site providing code and updates. Jack D. Hidary is a research scientist in quantum computing and in AI at Alphabet X, formerly Google X.



Quantum Machine Learning An Applied Approach


Quantum Machine Learning An Applied Approach
DOWNLOAD
Author : Santanu Ganguly
language : en
Publisher:
Release Date : 2021

Quantum Machine Learning An Applied Approach written by Santanu Ganguly and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research. The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost. Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms. The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author's active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples. You will: Understand and explore quantum computing and quantum machine learning, and their application in science and industry Explore various data training models utilizing quantum machine learning algorithms and Python libraries Get hands-on and familiar with applied quantum computing, including freely available cloud-based access Be familiar with techniques for training and scaling quantum neural networks Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive.



Supervised Learning With Quantum Computers


Supervised Learning With Quantum Computers
DOWNLOAD
Author : Maria Schuld
language : en
Publisher: Springer
Release Date : 2018-08-30

Supervised Learning With Quantum Computers written by Maria Schuld and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-30 with Science categories.


Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.



Quantum Machine Learning With Python


Quantum Machine Learning With Python
DOWNLOAD
Author : Santanu Pattanayak
language : en
Publisher: Apress
Release Date : 2021-03-29

Quantum Machine Learning With Python written by Santanu Pattanayak and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-29 with Computers categories.


Quickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others. You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others. You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, along with advanced topics of Quantum adiabatic processes and Quantum based optimization. Throughout the book, there are Python implementations of different Quantum machine learning and Quantum computing algorithms using the Qiskit toolkit from IBM and Cirq from Google Research. What You'll Learn Understand Quantum computing and Quantum machine learning Explore varied domains and the scenarios where Quantum machine learning solutions can be applied Develop expertise in algorithm development in varied Quantum computing frameworks Review the major challenges of building large scale Quantum computers and applying its various techniques Who This Book Is For Machine Learning enthusiasts and engineers who want to quickly scale up to Quantum Machine Learning



Machine Learning With Quantum Computers


Machine Learning With Quantum Computers
DOWNLOAD
Author : Maria Schuld
language : en
Publisher: Springer Nature
Release Date : 2021-10-17

Machine Learning With Quantum Computers written by Maria Schuld and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-17 with Science categories.


This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.



Machine Learning Meets Quantum Physics


Machine Learning Meets Quantum Physics
DOWNLOAD
Author : Kristof T. Schütt
language : en
Publisher: Springer Nature
Release Date : 2020-06-03

Machine Learning Meets Quantum Physics written by Kristof T. Schütt and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-03 with Science categories.


Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.



Learn Quantum Computing With Python And Q


Learn Quantum Computing With Python And Q
DOWNLOAD
Author : Sarah C. Kaiser
language : en
Publisher: Simon and Schuster
Release Date : 2021-07-27

Learn Quantum Computing With Python And Q written by Sarah C. Kaiser and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-27 with Computers categories.


Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Summary Learn Quantum Computing with Python and Q# demystifies quantum computing. Using Python and the new quantum programming language Q#, you’ll build your own quantum simulator and apply quantum programming techniques to real-world examples including cryptography and chemical analysis. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Quantum computers present a radical leap in speed and computing power. Improved scientific simulations and new frontiers in cryptography that are impossible with classical computing may soon be in reach. Microsoft’s Quantum Development Kit and the Q# language give you the tools to experiment with quantum computing without knowing advanced math or theoretical physics. About the book Learn Quantum Computing with Python and Q# introduces quantum computing from a practical perspective. Use Python to build your own quantum simulator and take advantage of Microsoft’s open source tools to fine-tune quantum algorithms. The authors explain complex math and theory through stories, visuals, and games. You’ll learn to apply quantum to real-world applications, such as sending secret messages and solving chemistry problems. What's inside The underlying mechanics of quantum computers Simulating qubits in Python Exploring quantum algorithms with Q# Applying quantum computing to chemistry, arithmetic, and data About the reader For software developers. No prior experience with quantum computing required. About the author Dr. Sarah Kaiser works at the Unitary Fund, a non-profit organization supporting the quantum open-source ecosystem, and is an expert in building quantum tech in the lab. Dr. Christopher Granade works in the Quantum Systems group at Microsoft, and is an expert in characterizing quantum devices. Table of Contents PART 1 GETTING STARTED WITH QUANTUM 1 Introducing quantum computing 2 Qubits: The building blocks 3 Sharing secrets with quantum key distribution 4 Nonlocal games: Working with multiple qubits 5 Nonlocal games: Implementing a multi-qubit simulator 6 Teleportation and entanglement: Moving quantum data around PART 2 PROGRAMMING QUANTUM ALGORITHMS IN Q# 7 Changing the odds: An introduction to Q# 8 What is a quantum algorithm? 9 Quantum sensing: It’s not just a phase PART 3 APPLIED QUANTUM COMPUTING 10 Solving chemistry problems with quantum computers 11 Searching with quantum computers 12 Arithmetic with quantum computers



Principles Of Quantum Artificial Intelligence


Principles Of Quantum Artificial Intelligence
DOWNLOAD
Author : Andreas Wichert
language : en
Publisher:
Release Date : 2020-07

Principles Of Quantum Artificial Intelligence written by Andreas Wichert and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07 with Computers categories.




Quantum Computing For Everyone


Quantum Computing For Everyone
DOWNLOAD
Author : Chris Bernhardt
language : en
Publisher: MIT Press
Release Date : 2020-09-08

Quantum Computing For Everyone written by Chris Bernhardt and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-08 with Computers categories.


FOR NON-EXPERTS: Get an accessible introduction to quantum computing as a mathematician explains quantum algorithms, quantum entanglement, and more. Quantum computing is a beautiful fusion of quantum physics and computer science! Quantum computing incorporates some of the most stunning ideas from 20th-century physics into an entirely new way of thinking about computation. Here, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone comfortable with high school mathematics. A mathematician himself, Bernhardt simplifies the mathematics and provides elementary examples that illustrate both how the math works and what it means. He explains for the non-expert: • Quantum bits, or qubits—the basic unit of quantum computing • Quantum entanglement and what it means when qubits are entangled • Quantum cryptography • Classical computing topics like bits, gates, and logic • Quantum gates • Quantum algorithms and their speed • Quantum computers and how they’re built • And more! By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing.