Quaternionic Closed Operators Fractional Powers And Fractional Diffusion Processes

DOWNLOAD
Download Quaternionic Closed Operators Fractional Powers And Fractional Diffusion Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quaternionic Closed Operators Fractional Powers And Fractional Diffusion Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Quaternionic Closed Operators Fractional Powers And Fractional Diffusion Processes
DOWNLOAD
Author : Fabrizio Colombo
language : en
Publisher: Springer
Release Date : 2019-07-10
Quaternionic Closed Operators Fractional Powers And Fractional Diffusion Processes written by Fabrizio Colombo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-10 with Mathematics categories.
This book presents a new theory for evolution operators and a new method for defining fractional powers of vector operators. This new approach allows to define new classes of fractional diffusion and evolution problems. These innovative methods and techniques, based on the concept of S-spectrum, can inspire researchers from various areas of operator theory and PDEs to explore new research directions in their fields. This monograph is the natural continuation of the book: Spectral Theory on the S-Spectrum for Quaternionic Operators by Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey (Operator Theory: Advances and Applications, Vol. 270).
Spectral Theory On The S Spectrum For Quaternionic Operators
DOWNLOAD
Author : Fabrizio Colombo
language : en
Publisher: Springer
Release Date : 2019-01-04
Spectral Theory On The S Spectrum For Quaternionic Operators written by Fabrizio Colombo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Mathematics categories.
The subject of this monograph is the quaternionic spectral theory based on the notion of S-spectrum. With the purpose of giving a systematic and self-contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting. These topics are based on the notion of S-spectrum of a quaternionic linear operator. Further developments of this theory lead to applications in fractional diffusion and evolution problems that will be covered in a separate monograph.
Michele Sce S Works In Hypercomplex Analysis
DOWNLOAD
Author : Fabrizio Colombo
language : en
Publisher: Springer Nature
Release Date : 2020-10-24
Michele Sce S Works In Hypercomplex Analysis written by Fabrizio Colombo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-24 with Mathematics categories.
This book presents English translations of Michele Sce’s most important works, originally written in Italian during the period 1955-1973, on hypercomplex analysis and algebras of hypercomplex numbers. Despite their importance, these works are not very well known in the mathematics community because of the language they were published in. Possibly the most remarkable instance is the so-called Fueter-Sce mapping theorem, which is a cornerstone of modern hypercomplex analysis, and is not yet understood in its full generality. This volume is dedicated to revealing and describing the framework Sce worked in, at an exciting time when the various generalizations of complex analysis in one variable were still in their infancy. In addition to faithfully translating Sce’s papers, the authors discuss their significance and explain their connections to contemporary research in hypercomplex analysis. They also discuss many concrete examples that can serve as a basis for further research. The vast majority of the results presented here will be new to readers, allowing them to finally access the original sources with the benefit of comments from fellow mathematicians active in the field of hypercomplex analysis. As such, the book offers not only an important chapter in the history of hypercomplex analysis, but also a roadmap for further exciting research in the field.
Quaternionic Hilbert Spaces And Slice Hyperholomorphic Functions
DOWNLOAD
Author : Daniel Alpay
language : en
Publisher: Springer Nature
Release Date : 2024-12-09
Quaternionic Hilbert Spaces And Slice Hyperholomorphic Functions written by Daniel Alpay and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-09 with Mathematics categories.
The purpose of the present book is to develop the counterparts of Banach and Hilbert spaces in the setting of slice hyperholomorphic functions. Banach and Hilbert spaces of analytic functions, in one or several complex variables, play an important role in analysis and related fields. Besides their intrinsic interest, such spaces have numerous applications. The book is divided into three parts. In the first part, some foundational material on quaternionic functions and functional analysis are introduced. The second part is the core of the book and contains various types of functions spaces ranging from the Hardy spaces, also in the fractional case, to the Fock space extended to the case of quaternions. The third and final part present some further generalization. Researchers in functional analysis and hypercomplex analysis will find this book a key contribution to their field, but also researchers in mathematical physics, especially in quantum mechanics, will benefit from the insights presented.
Quaternionic Approximation
DOWNLOAD
Author : Sorin G. Gal
language : en
Publisher: Springer
Release Date : 2019-04-12
Quaternionic Approximation written by Sorin G. Gal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-12 with Mathematics categories.
This book presents the extensions to the quaternionic setting of some of the main approximation results in complex analysis. It also includes the main inequalities regarding the behavior of the derivatives of polynomials with quaternionic cofficients. With some few exceptions, all the material in this book belongs to recent research of the authors on the approximation of slice regular functions of a quaternionic variable. The book is addressed to researchers in various areas of mathematical analysis, in particular hypercomplex analysis, and approximation theory. It is accessible to graduate students and suitable for graduate courses in the above framework.
Recent Developments In Operator Theory Mathematical Physics And Complex Analysis
DOWNLOAD
Author : Daniel Alpay
language : en
Publisher: Springer Nature
Release Date : 2023-04-11
Recent Developments In Operator Theory Mathematical Physics And Complex Analysis written by Daniel Alpay and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-11 with Mathematics categories.
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.
Regular Functions Of A Quaternionic Variable
DOWNLOAD
Author : Graziano Gentili
language : en
Publisher: Springer Nature
Release Date : 2022-09-23
Regular Functions Of A Quaternionic Variable written by Graziano Gentili and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-23 with Mathematics categories.
This book surveys the foundations of the theory of slice regular functions over the quaternions, introduced in 2006, and gives an overview of its generalizations and applications. As in the case of other interesting quaternionic function theories, the original motivations were the richness of the theory of holomorphic functions of one complex variable and the fact that quaternions form the only associative real division algebra with a finite dimension n>2. (Slice) regular functions quickly showed particularly appealing features and developed into a full-fledged theory, while finding applications to outstanding problems from other areas of mathematics. For instance, this class of functions includes polynomials and power series. The nature of the zero sets of regular functions is particularly interesting and strictly linked to an articulate algebraic structure, which allows several types of series expansion and the study of singularities. Integral representation formulas enrich the theory and are fundamental to the construction of a noncommutative functional calculus. Regular functions have a particularly nice differential topology and are useful tools for the construction and classification of quaternionic orthogonal complex structures, where they compensate for the scarcity of conformal maps in dimension four. This second, expanded edition additionally covers a new branch of the theory: the study of regular functions whose domains are not axially symmetric. The volume is intended for graduate students and researchers in complex or hypercomplex analysis and geometry, function theory, and functional analysis in general.
Advances In Complex Analysis And Operator Theory
DOWNLOAD
Author : Fabrizio Colombo
language : en
Publisher: Birkhäuser
Release Date : 2017-09-30
Advances In Complex Analysis And Operator Theory written by Fabrizio Colombo and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-30 with Mathematics categories.
This book gathers contributions written by Daniel Alpay’s friends and collaborators. Several of the papers were presented at the International Conference on Complex Analysis and Operator Theory held in honor of Professor Alpay’s 60th birthday at Chapman University in November 2016. The main topics covered are complex analysis, operator theory and other areas of mathematics close to Alpay’s primary research interests. The book is recommended for mathematicians from the graduate level on, working in various areas of mathematical analysis, operator theory, infinite dimensional analysis, linear systems, and stochastic processes.
Hypercomplex Analysis And Its Applications
DOWNLOAD
Author : Nelson Faustino
language : en
Publisher: Springer Nature
Release Date : 2025-07-02
Hypercomplex Analysis And Its Applications written by Nelson Faustino and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-02 with Mathematics categories.
This book contains a collection of short papers based on the presentations given at the international conference on Hypercomplex Analysis and its Applications celebrating Paula Cerejeiras’ 60th birthday. These papers present the latest results as well as overviews on specific topics in the areas of hypercomplex and harmonic analysis as well as their connections with partial differential equations and spectral theory.
Operator Theory On One Sided Quaternion Linear Spaces Intrinsic S Functional Calculus And Spectral Operators
DOWNLOAD
Author : Jonathan Gantner
language : en
Publisher: American Mathematical Society
Release Date : 2021-02-10
Operator Theory On One Sided Quaternion Linear Spaces Intrinsic S Functional Calculus And Spectral Operators written by Jonathan Gantner and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-10 with Mathematics categories.
Two major themes drive this article: identifying the minimal structure necessary to formulate quaternionic operator theory and revealing a deep relation between complex and quaternionic operator theory. The theory for quaternionic right linear operators is usually formulated under the assumption that there exists not only a right- but also a left-multiplication on the considered Banach space $V$. This has technical reasons, as the space of bounded operators on $V$ is otherwise not a quaternionic linear space. A right linear operator is however only associated with the right multiplication on the space and in certain settings, for instance on quaternionic Hilbert spaces, the left multiplication is not defined a priori, but must be chosen randomly. Spectral properties of an operator should hence be independent of the left multiplication on the space.