[PDF] R For Basic And Applied Sciences - eBooks Review

R For Basic And Applied Sciences


R For Basic And Applied Sciences
DOWNLOAD

Download R For Basic And Applied Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R For Basic And Applied Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Basic And Applied Research


Basic And Applied Research
DOWNLOAD
Author : David Kaldewey
language : en
Publisher: Berghahn Books
Release Date : 2018-04-25

Basic And Applied Research written by David Kaldewey and has been published by Berghahn Books this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-25 with History categories.


Scientific research in different nations, particularly after World War II.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Learn R For Applied Statistics


Learn R For Applied Statistics
DOWNLOAD
Author : Eric Goh Ming Hui
language : en
Publisher: Apress
Release Date : 2018-11-30

Learn R For Applied Statistics written by Eric Goh Ming Hui and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-30 with Computers categories.


Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will Learn Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.



Applied Compositional Data Analysis


Applied Compositional Data Analysis
DOWNLOAD
Author : Peter Filzmoser
language : en
Publisher: Springer
Release Date : 2018-11-03

Applied Compositional Data Analysis written by Peter Filzmoser and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-03 with Mathematics categories.


This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.



Easy Statistics For Food Science With R


Easy Statistics For Food Science With R
DOWNLOAD
Author : Abbas F.M. Alkarkhi
language : en
Publisher: Academic Press
Release Date : 2018-09-18

Easy Statistics For Food Science With R written by Abbas F.M. Alkarkhi and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-18 with Technology & Engineering categories.


Easy Statistics for Food Science with R presents the application of statistical techniques to assist students and researchers who work in food science and food engineering in choosing the appropriate statistical technique. The book focuses on the use of univariate and multivariate statistical methods in the field of food science. The techniques are presented in a simplified form without relying on complex mathematical proofs. This book was written to help researchers from different fields to analyze their data and make valid decisions. The development of modern statistical packages makes the analysis of data easier than before. The book focuses on the application of statistics and correct methods for the analysis and interpretation of data. R statistical software is used throughout the book to analyze the data. - Contains numerous step-by-step tutorials help the reader to learn quickly - Covers the theory and application of the statistical techniques - Shows how to analyze data using R software - Provides R scripts for all examples and figures



An Introduction To Statistical Learning


An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30

An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.



R For Basic And Applied Sciences


R For Basic And Applied Sciences
DOWNLOAD
Author : JANARDHAN KADARI
language : en
Publisher: Shashwat Publication
Release Date : 2023-11-22

R For Basic And Applied Sciences written by JANARDHAN KADARI and has been published by Shashwat Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-22 with Computers categories.


R is a Statistcal programming language. R is Free and open source. R is an interpreted language not a compiled one. The R programming environment contains the range of tools for parallel computing, machine and deep learning and for working with big Data, including Torch and Tensar flow facilitating construction and implementation of neural networks. The Bioconductor repository contains over a thousand of software packages written in R for analyzing data sets from CDNA microarrays to copy-number variation and epigenomics (Robert Gentleman-Sorin Draghicia). Due to Data Handling and Modeling capabilities and its flexibility, R is becoming the most widely used software in bioinformatics. The R program is built from a variety of packages. These packages are libraries of commands. The Packages are available from the CRAN website. The current R is the result of a collaborative effort of the R core Group. R has many functions for statistical analysis and graphics. R has an effective data handling and storage facility. R provides operators for calculation on arrays, vectors, lists and matrices. This Book Covers all these with suitable examples. R has a collection of tools for data analysis. Keeping in view the Beginners apprehensions the Book provides the Salient Features of Descriptive Statistics & Covers the specific R tools for Statistical analysis. Throughout the Book examples are accompanied by R commands for easy reference. This Book Covers data handling, graphics, and a wide range of Statistical techniques. The Book would be of immense help to basic sciences, Engineering, Business Statistics, medicine streams, Biotechnology, Pharma, Bioinformatics, Genetics and Epidemiology.



Applied Econometrics With R


Applied Econometrics With R
DOWNLOAD
Author : Christian Kleiber
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-10

Applied Econometrics With R written by Christian Kleiber and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-10 with Business & Economics categories.


R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.



Probability With R


Probability With R
DOWNLOAD
Author : Jane M. Horgan
language : en
Publisher: John Wiley & Sons
Release Date : 2019-12-18

Probability With R written by Jane M. Horgan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-18 with Mathematics categories.


Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. This second edition includes: improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book. Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.



Basic Statistics For The Behavioral And Social Sciences Using R


Basic Statistics For The Behavioral And Social Sciences Using R
DOWNLOAD
Author : Wendy Zeitlin
language : en
Publisher: Oxford University Press
Release Date : 2019-02-25

Basic Statistics For The Behavioral And Social Sciences Using R written by Wendy Zeitlin and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-25 with Social Science categories.


Ideal for introductory statistics courses at both the undergraduate and graduate levels, Basic Statistics for the Behavioral and Social Sciences Using R is specifically designed to make adoption simple in a variety of disciplines. The text includes topics typically covered in introductory textbooks: probability, descriptive statistics, visualization, comparisons of means, tests of association, correlations, OLS regression, and power analysis. However, it also transcends other books at this level by covering topics such as bootstrapping and an introduction to R, for those who are novices to this powerful tool. In a straightforward and easy-to-understand format, the authors provide readers with a plethora of freely available and robust resources and examples that are applicable to a wide variety of behavioral and social science disciplines, including social work, psychology, and physical and occupational therapy. The book is a must-read for all professors and students endeavoring to learn basic statistics.