[PDF] R Mining Spatial Text Web And Social Media Data - eBooks Review

R Mining Spatial Text Web And Social Media Data


R Mining Spatial Text Web And Social Media Data
DOWNLOAD

Download R Mining Spatial Text Web And Social Media Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R Mining Spatial Text Web And Social Media Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



R Mining Spatial Text Web And Social Media Data


R Mining Spatial Text Web And Social Media Data
DOWNLOAD
Author : Bater Makhabel
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-06-19

R Mining Spatial Text Web And Social Media Data written by Bater Makhabel and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-19 with Computers categories.


Create data mining algorithms About This Book Develop a strong strategy to solve predictive modeling problems using the most popular data mining algorithms Real-world case studies will take you from novice to intermediate to apply data mining techniques Deploy cutting-edge sentiment analysis techniques to real-world social media data using R Who This Book Is For This Learning Path is for R developers who are looking to making a career in data analysis or data mining. Those who come across data mining problems of different complexities from web, text, numerical, political, and social media domains will find all information in this single learning path. What You Will Learn Discover how to manipulate data in R Get to know top classification algorithms written in R Explore solutions written in R based on R Hadoop projects Apply data management skills in handling large data sets Acquire knowledge about neural network concepts and their applications in data mining Create predictive models for classification, prediction, and recommendation Use various libraries on R CRAN for data mining Discover more about data potential, the pitfalls, and inferencial gotchas Gain an insight into the concepts of supervised and unsupervised learning Delve into exploratory data analysis Understand the minute details of sentiment analysis In Detail Data mining is the first step to understanding data and making sense of heaps of data. Properly mined data forms the basis of all data analysis and computing performed on it. This learning path will take you from the very basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining. You will learn how to manipulate data with R using code snippets and how to mine frequent patterns, association, and correlation while working with R programs. You will discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on R Hadoop projects. Now that you are comfortable with data mining with R, you will move on to implementing your knowledge with the help of end-to-end data mining projects. You will learn how to apply different mining concepts to various statistical and data applications in a wide range of fields. At this stage, you will be able to complete complex data mining cases and handle any issues you might encounter during projects. After this, you will gain hands-on experience of generating insights from social media data. You will get detailed instructions on how to obtain, process, and analyze a variety of socially-generated data while providing a theoretical background to accurately interpret your findings. You will be shown R code and examples of data that can be used as a springboard as you get the chance to undertake your own analyses of business, social, or political data. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Learning Data Mining with R by Bater Makhabel R Data Mining Blueprints by Pradeepta Mishra Social Media Mining with R by Nathan Danneman and Richard Heimann Style and approach A complete package with which will take you from the basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining.



R Mining Spatial Text Web And Social Media Data


R Mining Spatial Text Web And Social Media Data
DOWNLOAD
Author : Bater Makhabel
language : en
Publisher:
Release Date : 2017

R Mining Spatial Text Web And Social Media Data written by Bater Makhabel and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.




Mining The Social Web


Mining The Social Web
DOWNLOAD
Author : Matthew A. Russell
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-12-04

Mining The Social Web written by Matthew A. Russell and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-04 with Computers categories.


Mine the rich data tucked away in popular social websites such as Twitter, Facebook, LinkedIn, and Instagram. With the third edition of this popular guide, data scientists, analysts, and programmers will learn how to glean insights from social media—including who’s connecting with whom, what they’re talking about, and where they’re located—using Python code examples, Jupyter notebooks, or Docker containers. In part one, each standalone chapter focuses on one aspect of the social landscape, including each of the major social sites, as well as web pages, blogs and feeds, mailboxes, GitHub, and a newly added chapter covering Instagram. Part two provides a cookbook with two dozen bite-size recipes for solving particular issues with Twitter. Get a straightforward synopsis of the social web landscape Use Docker to easily run each chapter’s example code, packaged as a Jupyter notebook Adapt and contribute to the code’s open source GitHub repository Learn how to employ best-in-class Python 3 tools to slice and dice the data you collect Apply advanced mining techniques such as TFIDF, cosine similarity, collocation analysis, clique detection, and image recognition Build beautiful data visualizations with Python and JavaScript toolkits



Intelligent Analytics With Advanced Multi Industry Applications


Intelligent Analytics With Advanced Multi Industry Applications
DOWNLOAD
Author : Sun, Zhaohao
language : en
Publisher: IGI Global
Release Date : 2021-01-08

Intelligent Analytics With Advanced Multi Industry Applications written by Sun, Zhaohao and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-08 with Computers categories.


Many fundamental technological and managerial issues surrounding the development and implementation of intelligent analytics within multi-industry applications remain unsolved. There are still questions surrounding the foundation of intelligent analytics, the elements, the big characteristics, and the effects on business, management, technology, and society. Research is devoted to answering these questions and understanding how intelligent analytics can improve healthcare, mobile commerce, web services, cloud services, blockchain, 5G development, digital transformation, and more. Intelligent Analytics With Advanced Multi-Industry Applications is a critical reference source that explores cutting-edge theories, technologies, and methodologies of intelligent analytics with multi-industry applications and emphasizes the integration of artificial intelligence, business intelligence, big data, and analytics from a perspective of computing, service, and management. This book also provides real-world applications of the proposed concept of intelligent analytics to e-SMACS (electronic, social, mobile, analytics, cloud, and service) commerce and services, healthcare, the internet of things, the sharing economy, cloud computing, blockchain, and Industry 4.0. This book is ideal for scientists, engineers, educators, university students, service and management professionals, policymakers, decision makers, practitioners, stakeholders, researchers, and others who have an interest in how intelligent analytics are being implemented and utilized in diverse industries.



Interpreting The Comorbidity Of Learning Disorders


Interpreting The Comorbidity Of Learning Disorders
DOWNLOAD
Author : Pierluigi Zoccolotti
language : en
Publisher: Frontiers Media SA
Release Date : 2022-01-28

Interpreting The Comorbidity Of Learning Disorders written by Pierluigi Zoccolotti and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-28 with Science categories.




Mining Text Data


Mining Text Data
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-03

Mining Text Data written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-03 with Computers categories.


Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.



R


R
DOWNLOAD
Author : Bater Makhabel
language : en
Publisher:
Release Date : 2017

R written by Bater Makhabel and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Data mining categories.


Create data mining algorithms About This Book Develop a strong strategy to solve predictive modeling problems using the most popular data mining algorithms Real-world case studies will take you from novice to intermediate to apply data mining techniques Deploy cutting-edge sentiment analysis techniques to real-world social media data using R Who This Book Is For This Learning Path is for R developers who are looking to making a career in data analysis or data mining. Those who come across data mining problems of different complexities from web, text, numerical, political, and social media domains will find all information in this single learning path. What You Will Learn Discover how to manipulate data in R Get to know top classification algorithms written in R Explore solutions written in R based on R Hadoop projects Apply data management skills in handling large data sets Acquire knowledge about neural network concepts and their applications in data mining Create predictive models for classification, prediction, and recommendation Use various libraries on R CRAN for data mining Discover more about data potential, the pitfalls, and inferencial gotchas Gain an insight into the concepts of supervised and unsupervised learning Delve into exploratory data analysis Understand the minute details of sentiment analysis In Detail Data mining is the first step to understanding data and making sense of heaps of data. Properly mined data forms the basis of all data analysis and computing performed on it. This learning path will take you from the very basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining - social media mining. You will learn how to manipulate data with R using code snippets and how to mine frequent patterns, association, and correlation while working with R programs. You will discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on R Hadoop projects. Now that you are comfortable with data mining with R, you will move on to implementing your knowledge with the help of end-to-end data mining projects. You will learn how to apply different mining concepts to various statistical and data applications in a wide range of fields. At this stage, you will be able to complete complex data mining cases and handle any issues you might encounter during projects. After this, you will gain hands...



Web Data Mining


Web Data Mining
DOWNLOAD
Author : Bing Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-25

Web Data Mining written by Bing Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-25 with Computers categories.


Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.



Social Media Mining


Social Media Mining
DOWNLOAD
Author : Reza Zafarani
language : en
Publisher: Cambridge University Press
Release Date : 2014-04-28

Social Media Mining written by Reza Zafarani and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-28 with Computers categories.


Integrates social media, social network analysis, and data mining to provide an understanding of the potentials of social media mining.



Pytorch Recipes


Pytorch Recipes
DOWNLOAD
Author : Pradeepta Mishra
language : en
Publisher: Apress
Release Date : 2019-01-28

Pytorch Recipes written by Pradeepta Mishra and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-28 with Computers categories.


Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you'll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability distributions using PyTorch and get acquainted with its concepts. Further you will dive into transformations and graph computations with PyTorch. Along the way you will take a look at common issues faced with neural network implementation and tensor differentiation, and get the best solutions for them. Moving on to algorithms; you will learn how PyTorch works with supervised and unsupervised algorithms. You will see how convolutional neural networks, deep neural networks, and recurrent neural networks work using PyTorch. In conclusion you will get acquainted with natural language processing and text processing using PyTorch. What You Will Learn Master tensor operations for dynamic graph-based calculations using PyTorch Create PyTorch transformations and graph computations for neural networks Carry out supervised and unsupervised learning using PyTorch Work with deep learning algorithms such as CNN and RNN Build LSTM models in PyTorch Use PyTorch for text processing Who This Book Is For Readers wanting to dive straight into programming PyTorch.