Random Partial Differential Equations

DOWNLOAD
Download Random Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Random Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Spatial Branching Processes Random Snakes And Partial Differential Equations
DOWNLOAD
Author : Jean-Francois Le Gall
language : en
Publisher: Springer Science & Business Media
Release Date : 1999-07-01
Spatial Branching Processes Random Snakes And Partial Differential Equations written by Jean-Francois Le Gall and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-07-01 with Mathematics categories.
This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.
Probability And Partial Differential Equations In Modern Applied Mathematics
DOWNLOAD
Author : Edward C. Waymire
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-14
Probability And Partial Differential Equations In Modern Applied Mathematics written by Edward C. Waymire and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-14 with Mathematics categories.
"Probability and Partial Differential Equations in Modern Applied Mathematics" is devoted to the role of probabilistic methods in modern applied mathematics from the perspectives of both a tool for analysis and as a tool in modeling. There is a recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in the analysis of deterministic problems, as well as to offer new perspectives on the phenomena for modeling purposes. There is also a growing appreciation of the role for the inclusion of stochastic effects in the modeling of complex systems. This has led to interesting new mathematical problems at the interface of probability, dynamical systems, numerical analysis, and partial differential equations. This volume will be useful to researchers and graduate students interested in probabilistic methods, dynamical systems approaches and numerical analysis for mathematical modeling in the sciences and engineering.
Stochastic Partial Differential Equations
DOWNLOAD
Author : Helge Holden
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-08
Stochastic Partial Differential Equations written by Helge Holden and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-08 with Mathematics categories.
This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th,~se SPDEs explicitly, or at least provide algorithms or approximations for the solutions.
Stochastic Partial Differential Equations An Introduction
DOWNLOAD
Author : Wei Liu
language : en
Publisher: Springer
Release Date : 2015-10-06
Stochastic Partial Differential Equations An Introduction written by Wei Liu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-06 with Mathematics categories.
This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and the ‘locally monotone case’ is presented in a detailed and complete way for SPDEs. The extension to this more general framework for SPDEs, for example, in comparison to the well-known case of globally monotone coefficients, substantially widens the applicability of the results.
Random Perturbation Of Pdes And Fluid Dynamic Models
DOWNLOAD
Author : Franco Flandoli
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-03-11
Random Perturbation Of Pdes And Fluid Dynamic Models written by Franco Flandoli and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-11 with Mathematics categories.
This volume explores the random perturbation of PDEs and fluid dynamic models. The text describes the role of additive and bilinear multiplicative noise, and includes examples of abstract parabolic evolution equations.
Random Fields And Stochastic Partial Differential Equations
DOWNLOAD
Author : Yu. A. Rozanov
language : en
Publisher:
Release Date : 1991
Random Fields And Stochastic Partial Differential Equations written by Yu. A. Rozanov and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991 with Stochastic partial differential equations categories.
Numerical Methods For Stochastic Partial Differential Equations With White Noise
DOWNLOAD
Author : Zhongqiang Zhang
language : en
Publisher: Springer
Release Date : 2017-09-12
Numerical Methods For Stochastic Partial Differential Equations With White Noise written by Zhongqiang Zhang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-12 with Mathematics categories.
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.
Random Partial Differential Equations
DOWNLOAD
Author : HORNUNG
language : en
Publisher: Birkhäuser
Release Date : 2013-11-22
Random Partial Differential Equations written by HORNUNG and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-22 with Social Science categories.
Effective Dynamics Of Stochastic Partial Differential Equations
DOWNLOAD
Author : Jinqiao Duan
language : en
Publisher: Elsevier
Release Date : 2014-03-06
Effective Dynamics Of Stochastic Partial Differential Equations written by Jinqiao Duan and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-06 with Mathematics categories.
Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. - New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty - Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations - Solutions or hints to all Exercises
Random Differential Equations In Scientific Computing
DOWNLOAD
Author : Tobias Neckel
language : en
Publisher: Walter de Gruyter
Release Date : 2013-12-17
Random Differential Equations In Scientific Computing written by Tobias Neckel and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-17 with Mathematics categories.
This book is a holistic and self-contained treatment of the analysis and numerics of random differential equations from a problem-centred point of view. An interdisciplinary approach is applied by considering state-of-the-art concepts of both dynamical systems and scientific computing. The red line pervading this book is the two-fold reduction of a random partial differential equation disturbed by some external force as present in many important applications in science and engineering. First, the random partial differential equation is reduced to a set of random ordinary differential equations in the spirit of the method of lines. These are then further reduced to a family of (deterministic) ordinary differential equations. The monograph will be of benefit, not only to mathematicians, but can also be used for interdisciplinary courses in informatics and engineering.