Real Solutions To Equations From Geometry

DOWNLOAD
Download Real Solutions To Equations From Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Real Solutions To Equations From Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Painleve Equations In The Differential Geometry Of Surfaces
DOWNLOAD
Author : Alexander I. Bobenko TU Berlin
language : en
Publisher: Springer
Release Date : 2003-07-01
Painleve Equations In The Differential Geometry Of Surfaces written by Alexander I. Bobenko TU Berlin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-07-01 with Mathematics categories.
This book brings together two different branches of mathematics: the theory of Painlev and the theory of surfaces. Self-contained introductions to both these fields are presented. It is shown how some classical problems in surface theory can be solved using the modern theory of Painlev equations. In particular, an essential part of the book is devoted to Bonnet surfaces, i.e. to surfaces possessing families of isometries preserving the mean curvature function. A global classification of Bonnet surfaces is given using both ingredients of the theory of Painlev equations: the theory of isomonodromic deformation and the Painlev property. The book is illustrated by plots of surfaces. It is intended to be used by mathematicians and graduate students interested in differential geometry and Painlev equations. Researchers working in one of these areas can become familiar with another relevant branch of mathematics.
Real Solutions To Equations From Geometry
DOWNLOAD
Author : Frank Sottile
language : en
Publisher: American Mathematical Soc.
Release Date : 2011-08-31
Real Solutions To Equations From Geometry written by Frank Sottile and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-31 with Mathematics categories.
Understanding, finding, or even deciding on the existence of real solutions to a system of equations is a difficult problem with many applications outside of mathematics. While it is hopeless to expect much in general, we know a surprising amount about these questions for systems which possess additional structure often coming from geometry. This book focuses on equations from toric varieties and Grassmannians. Not only is much known about these, but such equations are common in applications. There are three main themes: upper bounds on the number of real solutions, lower bounds on the number of real solutions, and geometric problems that can have all solutions be real. The book begins with an overview, giving background on real solutions to univariate polynomials and the geometry of sparse polynomial systems. The first half of the book concludes with fewnomial upper bounds and with lower bounds to sparse polynomial systems. The second half of the book begins by sampling some geometric problems for which all solutions can be real, before devoting the last five chapters to the Shapiro Conjecture, in which the relevant polynomial systems have only real solutions.
Handbook Of Geometric Constraint Systems Principles
DOWNLOAD
Author : Meera Sitharam
language : en
Publisher: CRC Press
Release Date : 2018-07-20
Handbook Of Geometric Constraint Systems Principles written by Meera Sitharam and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-20 with Mathematics categories.
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.
Geometry A Comprehensive Course
DOWNLOAD
Author : Dan Pedoe
language : en
Publisher: Courier Corporation
Release Date : 2013-04-02
Geometry A Comprehensive Course written by Dan Pedoe and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-02 with Mathematics categories.
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Analytical Geometry
DOWNLOAD
Author : Izu Vaisman
language : en
Publisher: World Scientific Publishing Company
Release Date : 1997-10-31
Analytical Geometry written by Izu Vaisman and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-10-31 with Mathematics categories.
This volume discusses the classical subjects of Euclidean, affine and projective geometry in two and three dimensions, including the classification of conics and quadrics, and geometric transformations. These subjects are important both for the mathematical grounding of the student and for applications to various other subjects. They may be studied in the first year or as a second course in geometry.The material is presented in a geometric way, and it aims to develop the geometric intuition and thinking of the student, as well as his ability to understand and give mathematical proofs. Linear algebra is not a prerequisite, and is kept to a bare minimum.The book includes a few methodological novelties, and a large number of exercises and problems with solutions. It also has an appendix about the use of the computer program MAPLEV in solving problems of analytical and projective geometry, with examples.
Computations In Algebraic Geometry With Macaulay 2
DOWNLOAD
Author : David Eisenbud
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Computations In Algebraic Geometry With Macaulay 2 written by David Eisenbud and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.
An Introduction To Algebraic Geometry
DOWNLOAD
Author : Kenji Ueno
language : en
Publisher: American Mathematical Soc.
Release Date : 1997
An Introduction To Algebraic Geometry written by Kenji Ueno and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.
This introduction to algebraic geometry allows readers to grasp the fundamentals of the subject with only linear algebra and calculus as prerequisites. After a brief history of the subject, the book introduces projective spaces and projective varieties, and explains plane curves and resolution of their singularities. The volume further develops the geometry of algebraic curves and treats congruence zeta functions of algebraic curves over a finite field. It concludes with a complex analytical discussion of algebraic curves. The author emphasizes computation of concrete examples rather than proofs, and these examples are discussed from various viewpoints. This approach allows readers to develop a deeper understanding of the theorems.
Geometry
DOWNLOAD
Author : Audun Holme
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-23
Geometry written by Audun Holme and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-23 with Mathematics categories.
This is a revised edition of the ?rst printing which appeared in 2002. The book is based on lectures at the University of Bergen, Norway.Over the years these lectures have covered many different aspects and facets of the wonderful ?eld of geometry. Consequently it has never been possible to give a full and ?nal account of geometry as such, at an undergraduatelevel: A carefully consideredselection has always been necessary. The present book constitutes the main central themes of these selections. One of the groups I am aiming at, is future teachers of mathematics. All too oftenthe textsdealingwith geometrywhichgo intothe syllabusforteacher-students present the material in ways which appear pedantic and formalistic, suppressing the very powerful and dynamic character of this old ?eld, which at the same time so young. Geometry is a ?eld of mathematical insight, research, history and source of artistic inspiration. And not least important, an integral part of our common cultural heritage.
Numerically Solving Polynomial Systems With Bertini
DOWNLOAD
Author : Daniel J. Bates
language : en
Publisher: SIAM
Release Date : 2013-11-08
Numerically Solving Polynomial Systems With Bertini written by Daniel J. Bates and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-08 with Science categories.
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.
Modern Geometry Methods And Applications
DOWNLOAD
Author : B.A. Dubrovin
language : en
Publisher: Springer Science & Business Media
Release Date : 1985-08-05
Modern Geometry Methods And Applications written by B.A. Dubrovin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1985-08-05 with Mathematics categories.
Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.