Real Time Big Data Analytics Emerging Architecture

DOWNLOAD
Download Real Time Big Data Analytics Emerging Architecture PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Real Time Big Data Analytics Emerging Architecture book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Real Time Big Data Analytics Emerging Architecture
DOWNLOAD
Author : Mike Barlow
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2013-06-24
Real Time Big Data Analytics Emerging Architecture written by Mike Barlow and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-24 with Computers categories.
Five or six years ago, analysts working with big datasets made queries and got the results back overnight. The data world was revolutionized a few years ago when Hadoop and other tools made it possible to getthe results from queries in minutes. But the revolution continues. Analysts now demand sub-second, near real-time query results. Fortunately, we have the tools to deliver them. This report examines tools and technologies that are driving real-time big data analytics.
Real Time Big Data Analytics
DOWNLOAD
Author : Mike Barlow
language : en
Publisher:
Release Date : 2014-08-15
Real Time Big Data Analytics written by Mike Barlow and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-15 with Computers categories.
Five or six years ago, analysts working with big datasets made queries and got the results back overnight. The data world was revolutionized a few years ago when Hadoop and other tools made it possible to getthe results from queries in minutes. But the revolution continues. Analysts now demand sub-second, near real-time query results. Fortunately, we have the tools to deliver them. This report examines tools and technologies that are driving real-time big data analytics.
Real Time Big Data Analytics
DOWNLOAD
Author : Sumit Gupta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-02-26
Real Time Big Data Analytics written by Sumit Gupta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-26 with Computers categories.
Design, process, and analyze large sets of complex data in real time About This Book Get acquainted with transformations and database-level interactions, and ensure the reliability of messages processed using Storm Implement strategies to solve the challenges of real-time data processing Load datasets, build queries, and make recommendations using Spark SQL Who This Book Is For If you are a Big Data architect, developer, or a programmer who wants to develop applications/frameworks to implement real-time analytics using open source technologies, then this book is for you. What You Will Learn Explore big data technologies and frameworks Work through practical challenges and use cases of real-time analytics versus batch analytics Develop real-word use cases for processing and analyzing data in real-time using the programming paradigm of Apache Storm Handle and process real-time transactional data Optimize and tune Apache Storm for varied workloads and production deployments Process and stream data with Amazon Kinesis and Elastic MapReduce Perform interactive and exploratory data analytics using Spark SQL Develop common enterprise architectures/applications for real-time and batch analytics In Detail Enterprise has been striving hard to deal with the challenges of data arriving in real time or near real time. Although there are technologies such as Storm and Spark (and many more) that solve the challenges of real-time data, using the appropriate technology/framework for the right business use case is the key to success. This book provides you with the skills required to quickly design, implement and deploy your real-time analytics using real-world examples of big data use cases. From the beginning of the book, we will cover the basics of varied real-time data processing frameworks and technologies. We will discuss and explain the differences between batch and real-time processing in detail, and will also explore the techniques and programming concepts using Apache Storm. Moving on, we'll familiarize you with “Amazon Kinesis” for real-time data processing on cloud. We will further develop your understanding of real-time analytics through a comprehensive review of Apache Spark along with the high-level architecture and the building blocks of a Spark program. You will learn how to transform your data, get an output from transformations, and persist your results using Spark RDDs, using an interface called Spark SQL to work with Spark. At the end of this book, we will introduce Spark Streaming, the streaming library of Spark, and will walk you through the emerging Lambda Architecture (LA), which provides a hybrid platform for big data processing by combining real-time and precomputed batch data to provide a near real-time view of incoming data. Style and approach This step-by-step is an easy-to-follow, detailed tutorial, filled with practical examples of basic and advanced features. Each topic is explained sequentially and supported by real-world examples and executable code snippets.
Practical Real Time Data Processing And Analytics
DOWNLOAD
Author : Shilpi Saxena
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-09-28
Practical Real Time Data Processing And Analytics written by Shilpi Saxena and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-28 with Computers categories.
A practical guide to help you tackle different real-time data processing and analytics problems using the best tools for each scenario About This Book Learn about the various challenges in real-time data processing and use the right tools to overcome them This book covers popular tools and frameworks such as Spark, Flink, and Apache Storm to solve all your distributed processing problems A practical guide filled with examples, tips, and tricks to help you perform efficient Big Data processing in real-time Who This Book Is For If you are a Java developer who would like to be equipped with all the tools required to devise an end-to-end practical solution on real-time data streaming, then this book is for you. Basic knowledge of real-time processing would be helpful, and knowing the fundamentals of Maven, Shell, and Eclipse would be great. What You Will Learn Get an introduction to the established real-time stack Understand the key integration of all the components Get a thorough understanding of the basic building blocks for real-time solution designing Garnish the search and visualization aspects for your real-time solution Get conceptually and practically acquainted with real-time analytics Be well equipped to apply the knowledge and create your own solutions In Detail With the rise of Big Data, there is an increasing need to process large amounts of data continuously, with a shorter turnaround time. Real-time data processing involves continuous input, processing and output of data, with the condition that the time required for processing is as short as possible. This book covers the majority of the existing and evolving open source technology stack for real-time processing and analytics. You will get to know about all the real-time solution aspects, from the source to the presentation to persistence. Through this practical book, you'll be equipped with a clear understanding of how to solve challenges on your own. We'll cover topics such as how to set up components, basic executions, integrations, advanced use cases, alerts, and monitoring. You'll be exposed to the popular tools used in real-time processing today such as Apache Spark, Apache Flink, and Storm. Finally, you will put your knowledge to practical use by implementing all of the techniques in the form of a practical, real-world use case. By the end of this book, you will have a solid understanding of all the aspects of real-time data processing and analytics, and will know how to deploy the solutions in production environments in the best possible manner. Style and Approach In this practical guide to real-time analytics, each chapter begins with a basic high-level concept of the topic, followed by a practical, hands-on implementation of each concept, where you can see the working and execution of it. The book is written in a DIY style, with plenty of practical use cases, well-explained code examples, and relevant screenshots and diagrams.
Big Data Application Architecture Q A
DOWNLOAD
Author : Nitin Sawant
language : en
Publisher: Apress
Release Date : 2013-12-17
Big Data Application Architecture Q A written by Nitin Sawant and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-17 with Computers categories.
"The expert's voice in big data"--Cover.
Big Data
DOWNLOAD
Author : James Warren
language : en
Publisher: Simon and Schuster
Release Date : 2015-04-29
Big Data written by James Warren and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-29 with Computers categories.
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Big Data Imperatives
DOWNLOAD
Author : Soumendra Mohanty
language : en
Publisher: Apress
Release Date : 2013-08-23
Big Data Imperatives written by Soumendra Mohanty and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-23 with Computers categories.
Big Data Imperatives, focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use. This book addresses the following big data characteristics: Very large, distributed aggregations of loosely structured data – often incomplete and inaccessible Petabytes/Exabytes of data Millions/billions of people providing/contributing to the context behind the data Flat schema's with few complex interrelationships Involves time-stamped events Made up of incomplete data Includes connections between data elements that must be probabilistically inferred Big Data Imperatives explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability. Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this bookintends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.
Real Time Big Data Analytics
DOWNLOAD
Author : Trilokesh Khatri
language : en
Publisher: Educohack Press
Release Date : 2025-01-03
Real Time Big Data Analytics written by Trilokesh Khatri and has been published by Educohack Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.
Real-Time Big Data Analytics: Emerging Trends explores how advanced technologies have significantly reduced data processing cycle time, enabling unprecedented data exploration and experimentation. This book delves into the real promise of advanced data analytics beyond mere technology, highlighting how real-time big data analytics processes data as it arrives to provide timely, actionable insights. We discuss scalable hardware solutions based on emerging technologies like nonvolatile memory devices and in-memory computing, paired with optimized data analytics algorithms such as machine learning. The book covers various frameworks for data analytics, including Hadoop, Spark, Storm, and NoSQL, and provides a comparative performance analysis of each. Designed for students, scholars, and professionals, Real-Time Big Data Analytics: Emerging Trends is an invaluable resource for those looking to master big data and real-time analytics.
Handbook Of Research On Cloud Infrastructures For Big Data Analytics
DOWNLOAD
Author : Raj, Pethuru
language : en
Publisher: IGI Global
Release Date : 2014-03-31
Handbook Of Research On Cloud Infrastructures For Big Data Analytics written by Raj, Pethuru and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-31 with Computers categories.
Clouds are being positioned as the next-generation consolidated, centralized, yet federated IT infrastructure for hosting all kinds of IT platforms and for deploying, maintaining, and managing a wider variety of personal, as well as professional applications and services. Handbook of Research on Cloud Infrastructures for Big Data Analytics focuses exclusively on the topic of cloud-sponsored big data analytics for creating flexible and futuristic organizations. This book helps researchers and practitioners, as well as business entrepreneurs, to make informed decisions and consider appropriate action to simplify and streamline the arduous journey towards smarter enterprises.
Research Anthology On Big Data Analytics Architectures And Applications
DOWNLOAD
Author : Management Association, Information Resources
language : en
Publisher: IGI Global
Release Date : 2021-09-24
Research Anthology On Big Data Analytics Architectures And Applications written by Management Association, Information Resources and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-24 with Computers categories.
Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.