[PDF] Real Time Data Analysis - eBooks Review

Real Time Data Analysis


Real Time Data Analysis
DOWNLOAD

Download Real Time Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Real Time Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Real Time Analytics


Real Time Analytics
DOWNLOAD
Author : Byron Ellis
language : en
Publisher: John Wiley & Sons
Release Date : 2014-06-23

Real Time Analytics written by Byron Ellis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-23 with Computers categories.


Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.



Real Time Big Data Analytics


Real Time Big Data Analytics
DOWNLOAD
Author : Sumit Gupta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-02-26

Real Time Big Data Analytics written by Sumit Gupta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-26 with Computers categories.


Design, process, and analyze large sets of complex data in real time About This Book Get acquainted with transformations and database-level interactions, and ensure the reliability of messages processed using Storm Implement strategies to solve the challenges of real-time data processing Load datasets, build queries, and make recommendations using Spark SQL Who This Book Is For If you are a Big Data architect, developer, or a programmer who wants to develop applications/frameworks to implement real-time analytics using open source technologies, then this book is for you. What You Will Learn Explore big data technologies and frameworks Work through practical challenges and use cases of real-time analytics versus batch analytics Develop real-word use cases for processing and analyzing data in real-time using the programming paradigm of Apache Storm Handle and process real-time transactional data Optimize and tune Apache Storm for varied workloads and production deployments Process and stream data with Amazon Kinesis and Elastic MapReduce Perform interactive and exploratory data analytics using Spark SQL Develop common enterprise architectures/applications for real-time and batch analytics In Detail Enterprise has been striving hard to deal with the challenges of data arriving in real time or near real time. Although there are technologies such as Storm and Spark (and many more) that solve the challenges of real-time data, using the appropriate technology/framework for the right business use case is the key to success. This book provides you with the skills required to quickly design, implement and deploy your real-time analytics using real-world examples of big data use cases. From the beginning of the book, we will cover the basics of varied real-time data processing frameworks and technologies. We will discuss and explain the differences between batch and real-time processing in detail, and will also explore the techniques and programming concepts using Apache Storm. Moving on, we'll familiarize you with “Amazon Kinesis” for real-time data processing on cloud. We will further develop your understanding of real-time analytics through a comprehensive review of Apache Spark along with the high-level architecture and the building blocks of a Spark program. You will learn how to transform your data, get an output from transformations, and persist your results using Spark RDDs, using an interface called Spark SQL to work with Spark. At the end of this book, we will introduce Spark Streaming, the streaming library of Spark, and will walk you through the emerging Lambda Architecture (LA), which provides a hybrid platform for big data processing by combining real-time and precomputed batch data to provide a near real-time view of incoming data. Style and approach This step-by-step is an easy-to-follow, detailed tutorial, filled with practical examples of basic and advanced features. Each topic is explained sequentially and supported by real-world examples and executable code snippets.



Practical Real Time Data Processing And Analytics


Practical Real Time Data Processing And Analytics
DOWNLOAD
Author : Shilpi Saxena
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-09-28

Practical Real Time Data Processing And Analytics written by Shilpi Saxena and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-28 with Computers categories.


A practical guide to help you tackle different real-time data processing and analytics problems using the best tools for each scenario About This Book Learn about the various challenges in real-time data processing and use the right tools to overcome them This book covers popular tools and frameworks such as Spark, Flink, and Apache Storm to solve all your distributed processing problems A practical guide filled with examples, tips, and tricks to help you perform efficient Big Data processing in real-time Who This Book Is For If you are a Java developer who would like to be equipped with all the tools required to devise an end-to-end practical solution on real-time data streaming, then this book is for you. Basic knowledge of real-time processing would be helpful, and knowing the fundamentals of Maven, Shell, and Eclipse would be great. What You Will Learn Get an introduction to the established real-time stack Understand the key integration of all the components Get a thorough understanding of the basic building blocks for real-time solution designing Garnish the search and visualization aspects for your real-time solution Get conceptually and practically acquainted with real-time analytics Be well equipped to apply the knowledge and create your own solutions In Detail With the rise of Big Data, there is an increasing need to process large amounts of data continuously, with a shorter turnaround time. Real-time data processing involves continuous input, processing and output of data, with the condition that the time required for processing is as short as possible. This book covers the majority of the existing and evolving open source technology stack for real-time processing and analytics. You will get to know about all the real-time solution aspects, from the source to the presentation to persistence. Through this practical book, you'll be equipped with a clear understanding of how to solve challenges on your own. We'll cover topics such as how to set up components, basic executions, integrations, advanced use cases, alerts, and monitoring. You'll be exposed to the popular tools used in real-time processing today such as Apache Spark, Apache Flink, and Storm. Finally, you will put your knowledge to practical use by implementing all of the techniques in the form of a practical, real-world use case. By the end of this book, you will have a solid understanding of all the aspects of real-time data processing and analytics, and will know how to deploy the solutions in production environments in the best possible manner. Style and Approach In this practical guide to real-time analytics, each chapter begins with a basic high-level concept of the topic, followed by a practical, hands-on implementation of each concept, where you can see the working and execution of it. The book is written in a DIY style, with plenty of practical use cases, well-explained code examples, and relevant screenshots and diagrams.



From Big Data To Intelligent Data


From Big Data To Intelligent Data
DOWNLOAD
Author : Fady A. Harfoush
language : en
Publisher: Springer Nature
Release Date : 2021-06-26

From Big Data To Intelligent Data written by Fady A. Harfoush and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-26 with Business & Economics categories.


This book addresses many of the gaps in how industry and academia are currently tackling problems associated with big data. It introduces novel concepts, describes the end-to-end process, and connects the various pieces of the puzzle to offer a holistic view. In addition, it explains important concepts for a wide audience, using accessible language, diagrams, examples and analogies to do so. The book is intended for readers working in industry who want to expand their knowledge or pursue a related degree, and employs an industry-centered perspective.



Big Data


Big Data
DOWNLOAD
Author : James Warren
language : en
Publisher: Simon and Schuster
Release Date : 2015-04-29

Big Data written by James Warren and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-29 with Computers categories.


Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth



Advanced Real Time Data Integration Apache Kafka And Spark Streaming Techniques


Advanced Real Time Data Integration Apache Kafka And Spark Streaming Techniques
DOWNLOAD
Author : Adam Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-03

Advanced Real Time Data Integration Apache Kafka And Spark Streaming Techniques written by Adam Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.


Unlock the potential of cutting-edge real-time data processing with "Advanced Real-Time Data Integration: Apache Kafka and Spark Streaming Techniques." This comprehensive guide serves as your gateway to mastering two pivotal technologies in the world of data integration. Perfect for software developers, data engineers, IT professionals, and students eager to explore the nuances of real-time data, this book equips you with the knowledge to build scalable, efficient, and reliable streaming applications. Delve into the sophisticated architecture of Apache Kafka, understanding its core components and advanced features that make it an essential element of contemporary data infrastructure. Examine the powerful capabilities of Spark Streaming, from foundational concepts to advanced performance optimizations, and discover how to integrate it effortlessly with Kafka to create dynamic data processing solutions. Covering a broad range of topics such as designing robust streaming applications, data serialization, system monitoring, and practical case studies, this book furnishes you with the necessary tools and insights to excel with streaming data. Through clear and concise explanations, "Advanced Real-Time Data Integration: Apache Kafka and Spark Streaming Techniques" simplifies the complexities of these technologies, making them accessible to a wide audience intent on harnessing the full potential of real-time data integration in their projects and enterprises.



Streaming Data


Streaming Data
DOWNLOAD
Author : Andrew Psaltis
language : en
Publisher: Simon and Schuster
Release Date : 2017-05-31

Streaming Data written by Andrew Psaltis and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-31 with Computers categories.


Summary Streaming Data introduces the concepts and requirements of streaming and real-time data systems. The book is an idea-rich tutorial that teaches you to think about how to efficiently interact with fast-flowing data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology As humans, we're constantly filtering and deciphering the information streaming toward us. In the same way, streaming data applications can accomplish amazing tasks like reading live location data to recommend nearby services, tracking faults with machinery in real time, and sending digital receipts before your customers leave the shop. Recent advances in streaming data technology and techniques make it possible for any developer to build these applications if they have the right mindset. This book will let you join them. About the Book Streaming Data is an idea-rich tutorial that teaches you to think about efficiently interacting with fast-flowing data. Through relevant examples and illustrated use cases, you'll explore designs for applications that read, analyze, share, and store streaming data. Along the way, you'll discover the roles of key technologies like Spark, Storm, Kafka, Flink, RabbitMQ, and more. This book offers the perfect balance between big-picture thinking and implementation details. What's Inside The right way to collect real-time data Architecting a streaming pipeline Analyzing the data Which technologies to use and when About the Reader Written for developers familiar with relational database concepts. No experience with streaming or real-time applications required. About the Author Andrew Psaltis is a software engineer focused on massively scalable real-time analytics. Table of Contents PART 1 - A NEW HOLISTIC APPROACH Introducing streaming data Getting data from clients: data ingestion Transporting the data from collection tier: decoupling the data pipeline Analyzing streaming data Algorithms for data analysis Storing the analyzed or collected data Making the data available Consumer device capabilities and limitations accessing the data PART 2 - TAKING IT REAL WORLD Analyzing Meetup RSVPs in real time



Streaming Intelligence Mastering Stream Processing For Real Time Data Analysis


Streaming Intelligence Mastering Stream Processing For Real Time Data Analysis
DOWNLOAD
Author : Dr.K.Sundravadivelu
language : en
Publisher: SK Research Group of Companies
Release Date : 2024-08-10

Streaming Intelligence Mastering Stream Processing For Real Time Data Analysis written by Dr.K.Sundravadivelu and has been published by SK Research Group of Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-10 with Computers categories.


Dr.K.Sundravadivelu, Assistant Professor, Department of Computer Science, School of Information Technology, Madurai Kamaraj University, Madurai, Tamil Nadu, India. Mrs.P.Renuka, Assistant Professor, Department of Computer Applications, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur, Tamil Nadu, India. Mrs.V.Suganthi, Assistant Professor, Department of Computer Science, C.T.T.E College for Women, Affiliated to University of Madras, Chennai, Tamil Nadu, India. Mrs.S.Durgadevi, Assistant Professor, Department of Computer Applications, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur, Tamil Nadu, India. Mr.B.Murali Krishna, Assistant Professor, Department of Computer Science and Engineering, Vignan's LARA Institute of Technology and Science, Vadlamudi, Andhra Pradesh, India.



Fundamentals Real Time Analytics Apache Kafka And Spark Streaming


Fundamentals Real Time Analytics Apache Kafka And Spark Streaming
DOWNLOAD
Author : Mrs.Preethi.J
language : en
Publisher: Leilani Katie Publication
Release Date : 2024-09-26

Fundamentals Real Time Analytics Apache Kafka And Spark Streaming written by Mrs.Preethi.J and has been published by Leilani Katie Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-26 with Computers categories.


Mrs.Preethi.J, Assistant Professor, Department of Computer Applications, Dhanalakshmi Srinivasan College of Arts & Science for Women (Autonomous), Perambalur, Tamil Nadu, India. Dr.R.Srinivasan, Associate Professor & Head, Department of Computer Science, SLS MAVMM Ayira Vasiyar College, Kallampatti, Madurai, Tamil Nadu, India. Dr.S.Rasheed Mansoor Ali, Assistant Professor, Department of Computer Science, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. Mrs.M.Shiyamala, Department of Computer Applications, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur, Tamil Nadu, India.



Data Analytics With Google Cloud Platform


Data Analytics With Google Cloud Platform
DOWNLOAD
Author : Murari Ramuka
language : en
Publisher: BPB Publications
Release Date : 2019-12-16

Data Analytics With Google Cloud Platform written by Murari Ramuka and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Computers categories.


Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services DESCRIPTION Modern businesses are awash with data, making data-driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert. The current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing. It also explains different types of data services/technology and machine learning algorithm/Pre-Trained API through real-business problems, which are built on the Google Cloud Platform (GCP). With some of the latest business examples and hands-on guide, this book will enable the developers entering the data analytics fields to implement an end-to-end data pipeline, using GCP Data services. Through the course of the book, you will come across multiple industry-wise use cases, like Building Datawarehouse using Big Query, a sample real-time data analytics solution on machine learning and Artificial Intelligence that helped with the business decision, by employing a variety of data science approaches on Google Cloud environment. Whether yourÊbusinessÊis at the early stage of cloud implementation in its journey or well on its way to digital transformation,ÊGoogle Cloud'sÊsolutions and technologies will always help chart a path to success. This book can be used to develop the GCP concepts in an easy way. It contains many examples showcasing the implementation of a GCP service. It enables the learning of the basic and advance concepts of Google Cloud Data Platform. This book is divided into 7 chapters and provides a detailed description of the core concepts of each of the Data services offered by Google Cloud. KEY FEATURES Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS) Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platform Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrepÊ Build real-time data pipeline to support real-time analytics using Pub/Sub messaging service Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for runningÊApache SparkÊandÊApache HadoopÊclusters in a simpler, more cost-efficient manner Learn how to use Cloud Data Studio for visualizing the data on top of Big Query Implement and understand real-world business scenarios for Machine Learning, Data Pipeline Engineering WHAT WILL YOU LEARN By the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Data Warehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning APIÕs to support real-life business problems. Remember to practice additional examples to master these techniques. WHO IS THIS BOOK FOR This book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. While no prior knowledge of Cloud Computing or related technologies is assumed, it will be helpful to have some data background and experience. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space.ÊÊ _Ê Ê Ê Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field ofÊ data analytics, can refer/use this book to master their knowledge/understanding. _Ê Ê Ê The highlight of this book is that it will start with theÊ basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences.Ê Table of Contents 1. GCP Overview and Architecture 2. Data Storage in GCPÊ 3. Data Processing in GCP with Pub/Sub and DataflowÊ 4. Data Processing in GCP with DataPrep and Dataflow 5. Big Query and Data Studio 6. Machine Learning with GCP 7. Sample Use cases and Examples