From Big Data To Intelligent Data

DOWNLOAD
Download From Big Data To Intelligent Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get From Big Data To Intelligent Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
From Big Data To Intelligent Data
DOWNLOAD
Author : Fady A. Harfoush
language : en
Publisher: Springer Nature
Release Date : 2021-06-26
From Big Data To Intelligent Data written by Fady A. Harfoush and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-26 with Business & Economics categories.
This book addresses many of the gaps in how industry and academia are currently tackling problems associated with big data. It introduces novel concepts, describes the end-to-end process, and connects the various pieces of the puzzle to offer a holistic view. In addition, it explains important concepts for a wide audience, using accessible language, diagrams, examples and analogies to do so. The book is intended for readers working in industry who want to expand their knowledge or pursue a related degree, and employs an industry-centered perspective.
Big Data Analytics For Intelligent Healthcare Management
DOWNLOAD
Author : Nilanjan Dey
language : en
Publisher: Academic Press
Release Date : 2019-04-15
Big Data Analytics For Intelligent Healthcare Management written by Nilanjan Dey and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-15 with Science categories.
Big Data Analytics for Intelligent Healthcare Management covers both the theory and application of hardware platforms and architectures, the development of software methods, techniques and tools, applications and governance, and adoption strategies for the use of big data in healthcare and clinical research. The book provides the latest research findings on the use of big data analytics with statistical and machine learning techniques that analyze huge amounts of real-time healthcare data. - Examines the methodology and requirements for development of big data architecture, big data modeling, big data as a service, big data analytics, and more - Discusses big data applications for intelligent healthcare management, such as revenue management and pricing, predictive analytics/forecasting, big data integration for medical data, algorithms and techniques, etc. - Covers the development of big data tools, such as data, web and text mining, data mining, optimization, machine learning, cloud in big data with Hadoop, big data in IoT, and more
Computational Intelligence For Multimedia Big Data On The Cloud With Engineering Applications
DOWNLOAD
Author : Arun Kumar Sangaiah
language : en
Publisher: Academic Press
Release Date : 2018-08-21
Computational Intelligence For Multimedia Big Data On The Cloud With Engineering Applications written by Arun Kumar Sangaiah and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-21 with Technology & Engineering categories.
Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications covers timely topics, including the neural network (NN), particle swarm optimization (PSO), evolutionary algorithm (GA), fuzzy sets (FS) and rough sets (RS), etc. Furthermore, the book highlights recent research on representative techniques to elaborate how a data-centric system formed a powerful platform for the processing of cloud hosted multimedia big data and how it could be analyzed, processed and characterized by CI. The book also provides a view on how techniques in CI can offer solutions in modeling, relationship pattern recognition, clustering and other problems in bioengineering. It is written for domain experts and developers who want to understand and explore the application of computational intelligence aspects (opportunities and challenges) for design and development of a data-centric system in the context of multimedia cloud, big data era and its related applications, such as smarter healthcare, homeland security, traffic control trading analysis and telecom, etc. Researchers and PhD students exploring the significance of data centric systems in the next paradigm of computing will find this book extremely useful. - Presents a brief overview of computational intelligence paradigms and its significant role in application domains - Illustrates the state-of-the-art and recent developments in the new theories and applications of CI approaches - Familiarizes the reader with computational intelligence concepts and technologies that are successfully used in the implementation of cloud-centric multimedia services in massive data processing - Provides new advances in the fields of CI for bio-engineering application
Intelligent Data Analysis
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer
Release Date : 2007-06-07
Intelligent Data Analysis written by Michael R. Berthold and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-07 with Computers categories.
This monograph is a detailed introductory presentation of the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues, ranging from the basic concepts of probability, through general notions of inference, to advanced multivariate and time series methods, as well as a detailed discussion of the increasingly important Bayesian approaches and Support Vector Machines. The following chapters then concentrate on the area of machine learning and artificial intelligence and provide introductions into the topics of rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on Visualization and a higher-level overview of the IDA processes, which illustrates the breadth of application of the presented ideas.
Artificial Intelligence For Big Data
DOWNLOAD
Author : Anand Deshpande
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-22
Artificial Intelligence For Big Data written by Anand Deshpande and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-22 with Computers categories.
Build next-generation Artificial Intelligence systems with Java Key Features Implement AI techniques to build smart applications using Deeplearning4j Perform big data analytics to derive quality insights using Spark MLlib Create self-learning systems using neural networks, NLP, and reinforcement learning Book Description In this age of big data, companies have larger amount of consumer data than ever before, far more than what the current technologies can ever hope to keep up with. However, Artificial Intelligence closes the gap by moving past human limitations in order to analyze data. With the help of Artificial Intelligence for big data, you will learn to use Machine Learning algorithms such as k-means, SVM, RBF, and regression to perform advanced data analysis. You will understand the current status of Machine and Deep Learning techniques to work on Genetic and Neuro-Fuzzy algorithms. In addition, you will explore how to develop Artificial Intelligence algorithms to learn from data, why they are necessary, and how they can help solve real-world problems. By the end of this book, you'll have learned how to implement various Artificial Intelligence algorithms for your big data systems and integrate them into your product offerings such as reinforcement learning, natural language processing, image recognition, genetic algorithms, and fuzzy logic systems. What you will learn Manage Artificial Intelligence techniques for big data with Java Build smart systems to analyze data for enhanced customer experience Learn to use Artificial Intelligence frameworks for big data Understand complex problems with algorithms and Neuro-Fuzzy systems Design stratagems to leverage data using Machine Learning process Apply Deep Learning techniques to prepare data for modeling Construct models that learn from data using open source tools Analyze big data problems using scalable Machine Learning algorithms Who this book is for This book is for you if you are a data scientist, big data professional, or novice who has basic knowledge of big data and wish to get proficiency in Artificial Intelligence techniques for big data. Some competence in mathematics is an added advantage in the field of elementary linear algebra and calculus.
Guide To Intelligent Data Analysis
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-23
Guide To Intelligent Data Analysis written by Michael R. Berthold and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-23 with Computers categories.
Each passing year bears witness to the development of ever more powerful computers, increasingly fast and cheap storage media, and even higher bandwidth data connections. This makes it easy to believe that we can now – at least in principle – solve any problem we are faced with so long as we only have enough data. Yet this is not the case. Although large databases allow us to retrieve many different single pieces of information and to compute simple aggregations, general patterns and regularities often go undetected. Furthermore, it is exactly these patterns, regularities and trends that are often most valuable. To avoid the danger of “drowning in information, but starving for knowledge” the branch of research known as data analysis has emerged, and a considerable number of methods and software tools have been developed. However, it is not these tools alone but the intelligent application of human intuition in combination with computational power, of sound background knowledge with computer-aided modeling, and of critical reflection with convenient automatic model construction, that results in successful intelligent data analysis projects. Guide to Intelligent Data Analysis provides a hands-on instructional approach to many basic data analysis techniques, and explains how these are used to solve data analysis problems. Topics and features: guides the reader through the process of data analysis, following the interdependent steps of project understanding, data understanding, data preparation, modeling, and deployment and monitoring; equips the reader with the necessary information in order to obtain hands-on experience of the topics under discussion; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; includes numerous examples using R and KNIME, together with appendices introducing the open source software; integrates illustrations and case-study-style examples to support pedagogical exposition. This practical and systematic textbook/reference for graduate and advanced undergraduate students is also essential reading for all professionals who face data analysis problems. Moreover, it is a book to be used following one’s exploration of it. Dr. Michael R. Berthold is Nycomed-Professor of Bioinformatics and Information Mining at the University of Konstanz, Germany. Dr. Christian Borgelt is Principal Researcher at the Intelligent Data Analysis and Graphical Models Research Unit of the European Centre for Soft Computing, Spain. Dr. Frank Höppner is Professor of Information Systems at Ostfalia University of Applied Sciences, Germany. Dr. Frank Klawonn is a Professor in the Department of Computer Science and Head of the Data Analysis and Pattern Recognition Laboratory at Ostfalia University of Applied Sciences, Germany. He is also Head of the Bioinformatics and Statistics group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.
Deep Learning And Big Data For Intelligent Transportation
DOWNLOAD
Author : Khaled R. Ahmed
language : en
Publisher: Springer Nature
Release Date : 2021-04-10
Deep Learning And Big Data For Intelligent Transportation written by Khaled R. Ahmed and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-10 with Computers categories.
This book contributes to the progress towards intelligent transportation. It emphasizes new data management and machine learning approaches such as big data, deep learning and reinforcement learning. Deep learning and big data are very energetic and vital research topics of today’s technology. Road sensors, UAVs, GPS, CCTV and incident reports are sources of massive amount of data which are crucial to make serious traffic decisions. Herewith this substantial volume and velocity of data, it is challenging to build reliable prediction models based on machine learning methods and traditional relational database. Therefore, this book includes recent research works on big data, deep convolution networks and IoT-based smart solutions to limit the vehicle’s speed in a particular region, to support autonomous safe driving and to detect animals on roads for mitigating animal-vehicle accidents. This book serves broad readers including researchers, academicians, students and working professional in vehicles manufacturing, health and transportation departments and networking companies.
Intelligent Techniques For Data Science
DOWNLOAD
Author : Rajendra Akerkar
language : en
Publisher: Springer
Release Date : 2016-10-11
Intelligent Techniques For Data Science written by Rajendra Akerkar and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-11 with Computers categories.
This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions./p> The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for real‐world applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.
Advances In Intelligent Data Analysis And Applications
DOWNLOAD
Author : Jeng-Shyang Pan
language : en
Publisher:
Release Date : 2022
Advances In Intelligent Data Analysis And Applications written by Jeng-Shyang Pan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
This book constitutes the Proceeding of the Sixth International Conference on Intelligent Data Analysis and Applications, October 15-18, 2019, Arad, Romania. This edition is technically co-sponsored by "Aurel Vlaicu" University of Arad, Romania, Southwest Jiaotong University, Fujian University of Technology, Chang'an University, Shandong University of Science and Technology, Fujian Provincial Key Lab of Big Data Mining and Applications, and National Demonstration Center for Experimental Electronic Information and Electrical Technology Education (Fujian University of Technology), China, Romanian Academy, and General Association of Engineers in Romania - Arad Section. The book covers a range of topics: Machine Learning, Intelligent Control, Pattern Recognition, Computational Intelligence, Signal Analysis, Modeling and Visualization, Multimedia Sensing and Sensory Systems, Signal control, Imaging and Processing, Information System Security, Cryptography and Cryptanalysis, Databases and Data Mining, Information Hiding, Cloud Computing, Information Retrieval and Integration, Robotics, Control, Agents, Command, Control, Communication and Computers (C4), Swarming Technology, Sensor Technology, Smart cities. The book offers a timely, board snapshot of new development including trends and challenges that are yielding recent research directions in different areas of intelligent data analysis and applications. The book provides useful information to professors, researchers, and graduated students in area of intelligent data analysis and applications. .
Early Detection Of Neurological Disorders Using Machine Learning Systems
DOWNLOAD
Author : Paul, Sudip
language : en
Publisher: IGI Global
Release Date : 2019-06-28
Early Detection Of Neurological Disorders Using Machine Learning Systems written by Paul, Sudip and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-28 with Medical categories.
While doctors and physicians are more than capable of detecting diseases of the brain, the most agile human mind cannot compete with the processing power of modern technology. Utilizing algorithmic systems in healthcare in this way may provide a way to treat neurological diseases before they happen. Early Detection of Neurological Disorders Using Machine Learning Systems provides innovative insights into implementing smart systems to detect neurological diseases at a faster rate than by normal means. The topics included in this book are artificial intelligence, data analysis, and biomedical informatics. It is designed for clinicians, doctors, neurologists, physiotherapists, neurorehabilitation specialists, scholars, academics, and students interested in topics centered on biomedical engineering, bio-electronics, medical electronics, physiology, neurosciences, life sciences, and physics.