Real Time Streaming With Apache Kafka Spark And Storm

DOWNLOAD
Download Real Time Streaming With Apache Kafka Spark And Storm PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Real Time Streaming With Apache Kafka Spark And Storm book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Real Time Streaming With Apache Kafka Spark And Storm
DOWNLOAD
Author : Brindha Priyadarshini Jeyaraman
language : en
Publisher: BPB Publications
Release Date : 2021-08-20
Real Time Streaming With Apache Kafka Spark And Storm written by Brindha Priyadarshini Jeyaraman and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-20 with Computers categories.
Build a platform using Apache Kafka, Spark, and Storm to generate real-time data insights and view them through Dashboards. KEY FEATURES ● Extensive practical demonstration of Apache Kafka concepts, including producer and consumer examples. ● Includes graphical examples and explanations of implementing Kafka Producer and Kafka Consumer commands and methods. ● Covers integration and implementation of Spark-Kafka and Kafka-Storm architectures. DESCRIPTION Real-Time Streaming with Apache Kafka, Spark, and Storm is a book that provides an overview of the real-time streaming concepts and architectures of Apache Kafka, Storm, and Spark. The readers will learn how to build systems that can process data streams in real time using these technologies. They will be able to process a large amount of real-time data and perform analytics or generate insights as a result of this. The architecture of Kafka and its various components are described in detail. A Kafka Cluster installation and configuration will be demonstrated. The Kafka publisher-subscriber system will be implemented in the Eclipse IDE using the Command Line and Java. The book discusses the architecture of Apache Storm, the concepts of Spout and Bolt, as well as their applications in a Transaction Alert System. It also describes Spark's core concepts, applications, and the use of Spark to implement a microservice. To learn about the process of integrating Kafka and Storm, two approaches to Spark and Kafka integration will be discussed. This book will assist a software engineer to transition to a Big Data engineer and Big Data architect by providing knowledge of big data processing and the architectures of Kafka, Storm, and Spark Streaming. WHAT YOU WILL LEARN ● Creation of Kafka producers, consumers, and brokers using command line. ● End-to-end implementation of Kafka messaging system with Java in Eclipse. ● Perform installation and creation of a Storm Cluster and execute Storm Management commands. ● Implement Spouts, Bolts and a Topology in Storm for Transaction alert application system. ● Perform the implementation of a microservice using Spark in Scala IDE. ● Learn about the various approaches of integrating Kafka and Spark. ● Perform integration of Kafka and Storm using Java in the Eclipse IDE. WHO THIS BOOK IS FOR This book is intended for Software Developers, Data Scientists, and Big Data Architects who want to build software systems to process data streams in real time. To understand the concepts in this book, knowledge of any programming language such as Java, Python, etc. is needed. TABLE OF CONTENTS 1. Introduction to Kafka 2. Installing Kafka 3. Kafka Messaging 4. Kafka Producers 5. Kafka Consumers 6. Introduction to Storm 7. Installation and Configuration 8. Spouts and Bolts 9. Introduction to Spark 10. Spark Streaming 11. Kafka Integration with Storm 12. Kafka Integration with Spark
Building Data Streaming Applications With Apache Kafka
DOWNLOAD
Author : Manish Kumar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-08-18
Building Data Streaming Applications With Apache Kafka written by Manish Kumar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-18 with Computers categories.
Design and administer fast, reliable enterprise messaging systems with Apache Kafka About This Book Build efficient real-time streaming applications in Apache Kafka to process data streams of data Master the core Kafka APIs to set up Apache Kafka clusters and start writing message producers and consumers A comprehensive guide to help you get a solid grasp of the Apache Kafka concepts in Apache Kafka with pracitcalpractical examples Who This Book Is For If you want to learn how to use Apache Kafka and the different tools in the Kafka ecosystem in the easiest possible manner, this book is for you. Some programming experience with Java is required to get the most out of this book What You Will Learn Learn the basics of Apache Kafka from scratch Use the basic building blocks of a streaming application Design effective streaming applications with Kafka using Spark, Storm &, and Heron Understand the importance of a low -latency , high- throughput, and fault-tolerant messaging system Make effective capacity planning while deploying your Kafka Application Understand and implement the best security practices In Detail Apache Kafka is a popular distributed streaming platform that acts as a messaging queue or an enterprise messaging system. It lets you publish and subscribe to a stream of records, and process them in a fault-tolerant way as they occur. This book is a comprehensive guide to designing and architecting enterprise-grade streaming applications using Apache Kafka and other big data tools. It includes best practices for building such applications, and tackles some common challenges such as how to use Kafka efficiently and handle high data volumes with ease. This book first takes you through understanding the type messaging system and then provides a thorough introduction to Apache Kafka and its internal details. The second part of the book takes you through designing streaming application using various frameworks and tools such as Apache Spark, Apache Storm, and more. Once you grasp the basics, we will take you through more advanced concepts in Apache Kafka such as capacity planning and security. By the end of this book, you will have all the information you need to be comfortable with using Apache Kafka, and to design efficient streaming data applications with it. Style and approach A step-by –step, comprehensive guide filled with practical and real- world examples
Stream Processing With Apache Spark
DOWNLOAD
Author : Gerard Maas
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-06-05
Stream Processing With Apache Spark written by Gerard Maas and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-05 with Computers categories.
Before you can build analytics tools to gain quick insights, you first need to know how to process data in real time. With this practical guide, developers familiar with Apache Spark will learn how to put this in-memory framework to use for streaming data. You’ll discover how Spark enables you to write streaming jobs in almost the same way you write batch jobs. Authors Gerard Maas and François Garillot help you explore the theoretical underpinnings of Apache Spark. This comprehensive guide features two sections that compare and contrast the streaming APIs Spark now supports: the original Spark Streaming library and the newer Structured Streaming API. Learn fundamental stream processing concepts and examine different streaming architectures Explore Structured Streaming through practical examples; learn different aspects of stream processing in detail Create and operate streaming jobs and applications with Spark Streaming; integrate Spark Streaming with other Spark APIs Learn advanced Spark Streaming techniques, including approximation algorithms and machine learning algorithms Compare Apache Spark to other stream processing projects, including Apache Storm, Apache Flink, and Apache Kafka Streams
Practical Real Time Data Processing And Analytics
DOWNLOAD
Author : Shilpi Saxena
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-09-28
Practical Real Time Data Processing And Analytics written by Shilpi Saxena and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-28 with Computers categories.
A practical guide to help you tackle different real-time data processing and analytics problems using the best tools for each scenario About This Book Learn about the various challenges in real-time data processing and use the right tools to overcome them This book covers popular tools and frameworks such as Spark, Flink, and Apache Storm to solve all your distributed processing problems A practical guide filled with examples, tips, and tricks to help you perform efficient Big Data processing in real-time Who This Book Is For If you are a Java developer who would like to be equipped with all the tools required to devise an end-to-end practical solution on real-time data streaming, then this book is for you. Basic knowledge of real-time processing would be helpful, and knowing the fundamentals of Maven, Shell, and Eclipse would be great. What You Will Learn Get an introduction to the established real-time stack Understand the key integration of all the components Get a thorough understanding of the basic building blocks for real-time solution designing Garnish the search and visualization aspects for your real-time solution Get conceptually and practically acquainted with real-time analytics Be well equipped to apply the knowledge and create your own solutions In Detail With the rise of Big Data, there is an increasing need to process large amounts of data continuously, with a shorter turnaround time. Real-time data processing involves continuous input, processing and output of data, with the condition that the time required for processing is as short as possible. This book covers the majority of the existing and evolving open source technology stack for real-time processing and analytics. You will get to know about all the real-time solution aspects, from the source to the presentation to persistence. Through this practical book, you'll be equipped with a clear understanding of how to solve challenges on your own. We'll cover topics such as how to set up components, basic executions, integrations, advanced use cases, alerts, and monitoring. You'll be exposed to the popular tools used in real-time processing today such as Apache Spark, Apache Flink, and Storm. Finally, you will put your knowledge to practical use by implementing all of the techniques in the form of a practical, real-world use case. By the end of this book, you will have a solid understanding of all the aspects of real-time data processing and analytics, and will know how to deploy the solutions in production environments in the best possible manner. Style and Approach In this practical guide to real-time analytics, each chapter begins with a basic high-level concept of the topic, followed by a practical, hands-on implementation of each concept, where you can see the working and execution of it. The book is written in a DIY style, with plenty of practical use cases, well-explained code examples, and relevant screenshots and diagrams.
Streaming Systems
DOWNLOAD
Author : Tyler Akidau
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-07-16
Streaming Systems written by Tyler Akidau and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-16 with Computers categories.
Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You’ll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra
Streaming Architecture
DOWNLOAD
Author : Ted Dunning
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-05-10
Streaming Architecture written by Ted Dunning and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-10 with Computers categories.
More and more data-driven companies are looking to adopt stream processing and streaming analytics. With this concise ebook, you’ll learn best practices for designing a reliable architecture that supports this emerging big-data paradigm. Authors Ted Dunning and Ellen Friedman (Real World Hadoop) help you explore some of the best technologies to handle stream processing and analytics, with a focus on the upstream queuing or message-passing layer. To illustrate the effectiveness of these technologies, this book also includes specific use cases. Ideal for developers and non-technical people alike, this book describes: Key elements in good design for streaming analytics, focusing on the essential characteristics of the messaging layer New messaging technologies, including Apache Kafka and MapR Streams, with links to sample code Technology choices for streaming analytics: Apache Spark Streaming, Apache Flink, Apache Storm, and Apache Apex How stream-based architectures are helpful to support microservices Specific use cases such as fraud detection and geo-distributed data streams Ted Dunning is Chief Applications Architect at MapR Technologies, and active in the open source community. He currently serves as VP for Incubator at the Apache Foundation, as a champion and mentor for a large number of projects, and as committer and PMC member of the Apache ZooKeeper and Drill projects. Ted is on Twitter as @ted_dunning. Ellen Friedman, a committer for the Apache Drill and Apache Mahout projects, is a solutions consultant and well-known speaker and author, currently writing mainly about big data topics. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics. Ellen is on Twitter as @Ellen_Friedman.
Streaming Architecture
DOWNLOAD
Author : Ted Dunning
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-05-10
Streaming Architecture written by Ted Dunning and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-10 with Computers categories.
More and more data-driven companies are looking to adopt stream processing and streaming analytics. With this concise ebook, you’ll learn best practices for designing a reliable architecture that supports this emerging big-data paradigm. Authors Ted Dunning and Ellen Friedman (Real World Hadoop) help you explore some of the best technologies to handle stream processing and analytics, with a focus on the upstream queuing or message-passing layer. To illustrate the effectiveness of these technologies, this book also includes specific use cases. Ideal for developers and non-technical people alike, this book describes: Key elements in good design for streaming analytics, focusing on the essential characteristics of the messaging layer New messaging technologies, including Apache Kafka and MapR Streams, with links to sample code Technology choices for streaming analytics: Apache Spark Streaming, Apache Flink, Apache Storm, and Apache Apex How stream-based architectures are helpful to support microservices Specific use cases such as fraud detection and geo-distributed data streams Ted Dunning is Chief Applications Architect at MapR Technologies, and active in the open source community. He currently serves as VP for Incubator at the Apache Foundation, as a champion and mentor for a large number of projects, and as committer and PMC member of the Apache ZooKeeper and Drill projects. Ted is on Twitter as @ted_dunning. Ellen Friedman, a committer for the Apache Drill and Apache Mahout projects, is a solutions consultant and well-known speaker and author, currently writing mainly about big data topics. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics. Ellen is on Twitter as @Ellen_Friedman.
Big Data Processing With Apache Spark
DOWNLOAD
Author : Srini Penchikala
language : en
Publisher: Lulu.com
Release Date : 2018-03-13
Big Data Processing With Apache Spark written by Srini Penchikala and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-13 with Computers categories.
Apache Spark is a popular open-source big-data processing framework thatÕs built around speed, ease of use, and unified distributed computing architecture. Not only it supports developing applications in different languages like Java, Scala, Python, and R, itÕs also hundred times faster in memory and ten times faster even when running on disk compared to traditional data processing frameworks. Whether you are currently working on a big data project or interested in learning more about topics like machine learning, streaming data processing, and graph data analytics, this book is for you. You can learn about Apache Spark and develop Spark programs for various use cases in big data analytics using the code examples provided. This book covers all the libraries in Spark ecosystem: Spark Core, Spark SQL, Spark Streaming, Spark ML, and Spark GraphX.
Real Time Big Data Analytics
DOWNLOAD
Author : Trilokesh Khatri
language : en
Publisher: Educohack Press
Release Date : 2025-01-03
Real Time Big Data Analytics written by Trilokesh Khatri and has been published by Educohack Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.
Real-Time Big Data Analytics: Emerging Trends explores how advanced technologies have significantly reduced data processing cycle time, enabling unprecedented data exploration and experimentation. This book delves into the real promise of advanced data analytics beyond mere technology, highlighting how real-time big data analytics processes data as it arrives to provide timely, actionable insights. We discuss scalable hardware solutions based on emerging technologies like nonvolatile memory devices and in-memory computing, paired with optimized data analytics algorithms such as machine learning. The book covers various frameworks for data analytics, including Hadoop, Spark, Storm, and NoSQL, and provides a comparative performance analysis of each. Designed for students, scholars, and professionals, Real-Time Big Data Analytics: Emerging Trends is an invaluable resource for those looking to master big data and real-time analytics.
Distributed Sensing And Intelligent Systems
DOWNLOAD
Author : Mohamed Elhoseny
language : en
Publisher: Springer Nature
Release Date : 2022-06-27
Distributed Sensing And Intelligent Systems written by Mohamed Elhoseny and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-27 with Technology & Engineering categories.
This book is the proceeding of the 1st International Conference on Distributed Sensing and Intelligent Systems (ICDSIS2020) which will be held in The National School of Applied Sciences of Agadir, Ibn Zohr University, Agadir, Morocco on February 01-03, 2020. ICDSIS2020 is co-organized by Computer Vision and Intelligent Systems Lab, University of North Texas, USA as a scientific collaboration event with The National School of Applied Sciences of Agadir, Ibn Zohr University. ICDSIS2020 aims to foster students, researchers, academicians and industry persons in the field of Computer and Information Science, Intelligent Systems, and Electronics and Communication Engineering in general. The volume collects contributions from leading experts around the globe with the latest insights on emerging topics, and includes reviews, surveys, and research chapters covering all aspects of distributed sensing and intelligent systems. The volume is divided into 5 key sections: Distributed Sensing Applications; Intelligent Systems; Advanced theories and algorithms in machine learning and data mining; Artificial intelligence and optimization, and application to Internet of Things (IoT); and Cybersecurity and Secure Distributed Systems. This conference proceeding is an academic book which can be read by students, analysts, policymakers, and regulators interested in Distributed Sensing, Smart Network approaches, Smart Cities, IoT Applications, and Intelligent Applications. It is written in plain and easy language, and describes new concepts when they appear first so that a reader without prior background of the field finds it readable. The book is primarily intended for research students in sensor networks and IoT applications (including intelligent information systems, and smart sensors applications), academics in higher education institutions including universities and vocational colleges, policy makers and legislators.