Reasoning Web Explainable Artificial Intelligence

DOWNLOAD
Download Reasoning Web Explainable Artificial Intelligence PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Reasoning Web Explainable Artificial Intelligence book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Reasoning Web Explainable Artificial Intelligence
DOWNLOAD
Author : Markus Krötzsch
language : en
Publisher: Springer Nature
Release Date : 2019-09-17
Reasoning Web Explainable Artificial Intelligence written by Markus Krötzsch and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-17 with Computers categories.
This volume contains lecture notes of the 15th Reasoning Web Summer School (RW 2019), held in Bolzano, Italy, in September 2019. The research areas of Semantic Web, Linked Data, and Knowledge Graphs have recently received a lot of attention in academia and industry. Since its inception in 2001, the Semantic Web has aimed at enriching the existing Web with meta-data and processing methods, so as to provide Web-based systems with intelligent capabilities such as context awareness and decision support. The Semantic Web vision has been driving many community efforts which have invested a lot of resources in developing vocabularies and ontologies for annotating their resources semantically. Besides ontologies, rules have long been a central part of the Semantic Web framework and are available as one of its fundamental representation tools, with logic serving as a unifying foundation. Linked Data is a related research area which studies how one can make RDF data available on the Web and interconnect it with other data with the aim of increasing its value for everybody. Knowledge Graphs have been shown useful not only for Web search (as demonstrated by Google, Bing, etc.) but also in many application domains.
Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges
DOWNLOAD
Author : Ilaria Tiddi
language : en
Publisher:
Release Date : 2020
Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges written by Ilaria Tiddi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Artificial intelligence categories.
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
Reasoning Web Declarative Artificial Intelligence
DOWNLOAD
Author : Marco Manna
language : en
Publisher: Springer Nature
Release Date : 2020-10-17
Reasoning Web Declarative Artificial Intelligence written by Marco Manna and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-17 with Computers categories.
This volume contains 8 lecture notes of the 16th Reasoning Web Summer School (RW 2020), held in Oslo, Norway, in June 2020. The Reasoning Web series of annual summer schools has become the prime educational event in the field of reasoning techniques on the Web, attracting both young and established researchers. The broad theme of this year's summer school was “Declarative Artificial Intelligence” and it covered various aspects of ontological reasoning and related issues that are of particular interest to Semantic Web and Linked Data applications. The following eight lectures have been presented during the school: Introduction to Probabilistic Ontologies, On the Complexity of Learning Description Logic Ontologies, Explanation via Machine Arguing, Stream Reasoning: From Theory to Practice, First-Order Rewritability of Temporal Ontology-Mediated Queries, An Introduction to Answer Set Programming and Some of Its Extensions, Declarative Data Analysis using Limit Datalog Programs, and Knowledge Graphs: Research Directions.
Explainable Artificial Intelligence
DOWNLOAD
Author : Luca Longo
language : en
Publisher: Springer Nature
Release Date : 2023-10-20
Explainable Artificial Intelligence written by Luca Longo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-20 with Computers categories.
Chapters “Finding Spurious Correlations with Function-Semantic Contrast Analysis” and “Explaining Socio-Demographic and Behavioral Patterns of Vaccination Against the Swine Flu (H1N1) Pandemic” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Artificial Intelligence In Medicine
DOWNLOAD
Author : David Riaño
language : en
Publisher: Springer
Release Date : 2019-06-19
Artificial Intelligence In Medicine written by David Riaño and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-19 with Computers categories.
This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.
Explainable Artificial Intelligence For Cyber Security
DOWNLOAD
Author : Mohiuddin Ahmed
language : en
Publisher: Springer Nature
Release Date : 2022-04-18
Explainable Artificial Intelligence For Cyber Security written by Mohiuddin Ahmed and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-18 with Computers categories.
This book presents that explainable artificial intelligence (XAI) is going to replace the traditional artificial, machine learning, deep learning algorithms which work as a black box as of today. To understand the algorithms better and interpret the complex networks of these algorithms, XAI plays a vital role. In last few decades, we have embraced AI in our daily life to solve a plethora of problems, one of the notable problems is cyber security. In coming years, the traditional AI algorithms are not able to address the zero-day cyber attacks, and hence, to capitalize on the AI algorithms, it is absolutely important to focus more on XAI. Hence, this book serves as an excellent reference for those who are working in cyber security and artificial intelligence.
Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges
DOWNLOAD
Author : I. Tiddi
language : en
Publisher: IOS Press
Release Date : 2020-05-06
Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges written by I. Tiddi and has been published by IOS Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-06 with Computers categories.
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
Foundations Of Semantic Web Technologies
DOWNLOAD
Author : Pascal Hitzler
language : en
Publisher: CRC Press
Release Date : 2009-08-06
Foundations Of Semantic Web Technologies written by Pascal Hitzler and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-08-06 with Computers categories.
Thoroughly covering basic introductions and intuitions, technical details, and formal foundations, this text focuses on the established foundations in this area that have become relatively stable over time. It presents the latest developments in Semantic Web standards, including RDF, RDF Schema, OWL 2, RIF, and SPARQL. It also explores formal semantics, OWL querying, the relationship between rules and OWL, and ontology engineering and applications.
Trustworthy Ai Integrating Learning Optimization And Reasoning
DOWNLOAD
Author : Fredrik Heintz
language : en
Publisher:
Release Date : 2021
Trustworthy Ai Integrating Learning Optimization And Reasoning written by Fredrik Heintz and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
This book constitutes the thoroughly refereed conference proceedings of the First International Workshop on the Foundation of Trustworthy AI - Integrating Learning, Optimization and Reasoning, TAILOR 2020, held virtually in September 2020, associated with ECAI 2020, the 24th European Conference on Artificial Intelligence. The 11 revised full papers presented together with 6 short papers and 6 position papers were reviewed and selected from 52 submissions. The contributions address various issues for Trustworthiness, Learning, reasoning, and optimization, Deciding and Learning How to Act, AutoAI, and Reasoning and Learning in Social Contexts.
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.