Recent Advances In Numerical Methods For Hyperbolic Pde Systems

DOWNLOAD
Download Recent Advances In Numerical Methods For Hyperbolic Pde Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Recent Advances In Numerical Methods For Hyperbolic Pde Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Recent Advances In Numerical Methods For Hyperbolic Pde Systems
DOWNLOAD
Author : María Luz Muñoz-Ruiz
language : en
Publisher: Springer Nature
Release Date : 2021-05-25
Recent Advances In Numerical Methods For Hyperbolic Pde Systems written by María Luz Muñoz-Ruiz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-25 with Mathematics categories.
The present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Málaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.
Recent Advances In Numerical Methods For Partial Differential Equations And Applications
DOWNLOAD
Author : Xiaobing Feng
language : en
Publisher: American Mathematical Soc.
Release Date : 2002
Recent Advances In Numerical Methods For Partial Differential Equations And Applications written by Xiaobing Feng and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.
This book is derived from lectures presented at the 2001 John H. Barrett Memorial Lectures at the University of Tennessee, Knoxville. The topic was computational mathematics, focusing on parallel numerical algorithms for partial differential equations, their implementation and applications in fluid mechanics and material science. Compiled here are articles from six of nine speakers. Each of them is a leading researcher in the field of computational mathematics and its applications. A vast area that has been coming into its own over the past 15 years, computational mathematics has experienced major developments in both algorithmic advances and applications to other fields. These developments have had profound implications in mathematics, science, engineering and industry. With the aid of powerful high performance computers, numerical simulation of physical phenomena is the only feasible method for analyzing many types of important phenomena, joining experimentation and theoretical analysis as the third method of scientific investigation. The three aspects: applications, theory, and computer implementation comprise a comprehensive overview of the topic. Leading lecturers were Mary Wheeler on applications, Jinchao Xu on theory, and David Keyes on computer implementation. Following the tradition of the Barrett Lectures, these in-depth articles and expository discussions make this book a useful reference for graduate students as well as the many groups of researchers working in advanced computations, including engineering and computer scientists.
Numerical Approximation Of Partial Differential Equations
DOWNLOAD
Author : Alfio Quarteroni
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-02-11
Numerical Approximation Of Partial Differential Equations written by Alfio Quarteroni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-11 with Mathematics categories.
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).
Recent Advances In Numerical Analysis
DOWNLOAD
Author : Carl De Boor
language : en
Publisher: Academic Press
Release Date : 2014-05-10
Recent Advances In Numerical Analysis written by Carl De Boor and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Mathematics categories.
Recent Advances in Numerical Analysis provides information pertinent to the developments in numerical analysis. This book covers a variety of topics, including positive functions, Sobolev spaces, computing paths, partial differential equations, and perturbation theory. Organized into 12 chapters, this book begins with an overview of stability conditions for numerical methods that can be expressed in the form that some associated function is positive. This text then examines the polynomial approximation theory having applications to finite element Galerkin methods. Other chapters consider the numerical condition of polynomials by examining three particular problem areas, namely, the representation of polynomials, algebraic equations, and the problem of orthogonalization. This book discusses as well a general theory that leads to a systematic way to prepare the initial data. The final chapter deals with the derivation of the Kronecker canonical form. This book is a valuable resource for applied mathematicians, numerical analysts, physicists, engineers, and research workers.
Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD
Author : Claes Johnson
language : en
Publisher: Courier Corporation
Release Date : 2012-05-23
Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-23 with Mathematics categories.
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Numerical Partial Differential Equations Finite Difference Methods
DOWNLOAD
Author : J.W. Thomas
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01
Numerical Partial Differential Equations Finite Difference Methods written by J.W. Thomas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
This text will be divided into two books which cover the topic of numerical partial differential equations. Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student, this text offers a means of coming out of a course with a large number of methods which provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation.
Partial Differential Equations With Numerical Methods
DOWNLOAD
Author : Stig Larsson
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-05
Partial Differential Equations With Numerical Methods written by Stig Larsson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-05 with Mathematics categories.
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : William F. Ames
language : en
Publisher: Academic Press
Release Date : 2014-05-10
Numerical Methods For Partial Differential Equations written by William F. Ames and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Mathematics categories.
Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.
Real Time Pde Constrained Optimization
DOWNLOAD
Author : Lorenz T. Biegler
language : en
Publisher: SIAM
Release Date : 2007-01-01
Real Time Pde Constrained Optimization written by Lorenz T. Biegler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.
Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
High Performance Computing In Science And Engineering 21
DOWNLOAD
Author : Wolfgang E. Nagel
language : en
Publisher: Springer Nature
Release Date : 2023-01-30
High Performance Computing In Science And Engineering 21 written by Wolfgang E. Nagel and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-30 with Computers categories.
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2021. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.