[PDF] Recurrent Neural Networks - eBooks Review

Recurrent Neural Networks


Recurrent Neural Networks
DOWNLOAD

Download Recurrent Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Recurrent Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Recurrent Neural Networks For Short Term Load Forecasting


Recurrent Neural Networks For Short Term Load Forecasting
DOWNLOAD
Author : Filippo Maria Bianchi
language : en
Publisher: Springer
Release Date : 2017-11-09

Recurrent Neural Networks For Short Term Load Forecasting written by Filippo Maria Bianchi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-09 with Computers categories.


The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.



Recurrent Neural Networks For Prediction


Recurrent Neural Networks For Prediction
DOWNLOAD
Author : Danilo Mandic
language : en
Publisher:
Release Date : 2003

Recurrent Neural Networks For Prediction written by Danilo Mandic and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with categories.


New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.? Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectur.



Recurrent Neural Networks With Python Quick Start Guide


Recurrent Neural Networks With Python Quick Start Guide
DOWNLOAD
Author : Simeon Kostadinov
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-11-30

Recurrent Neural Networks With Python Quick Start Guide written by Simeon Kostadinov and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-30 with Computers categories.


Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework. Key FeaturesTrain and deploy Recurrent Neural Networks using the popular TensorFlow libraryApply long short-term memory unitsExpand your skills in complex neural network and deep learning topicsBook Description Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling. Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood. After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field. What you will learnUse TensorFlow to build RNN modelsUse the correct RNN architecture for a particular machine learning taskCollect and clear the training data for your modelsUse the correct Python libraries for any task during the building phase of your modelOptimize your model for higher accuracyIdentify the differences between multiple models and how you can substitute themLearn the core deep learning fundamentals applicable to any machine learning modelWho this book is for This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.



Learning With Recurrent Neural Networks


Learning With Recurrent Neural Networks
DOWNLOAD
Author : Barbara Hammer
language : en
Publisher: Springer
Release Date : 2007-10-03

Learning With Recurrent Neural Networks written by Barbara Hammer and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-03 with Technology & Engineering categories.


Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a theoretical foundation, proving that the approach is appropriate as a learning mechanism in principle, is presented: Their universal approximation ability is investigated- including several new results for standard recurrent neural networks such as explicit bounds on the required number of neurons and the super Turing capability of sigmoidal recurrent networks. The information theoretical learnability is examined - including several contribution to distribution dependent learnability, an answer to an open question posed by Vidyasagar, and a generalisation of the recent luckiness framework to function classes. Finally, the complexity of training is considered - including new results on the loading problem for standard feedforward networks with an arbitrary multilayered architecture, a correlated number of neurons and training set size, a varying number of hidden neurons but fixed input dimension, or the sigmoidal activation function, respectively.



Convergence Analysis Of Recurrent Neural Networks


Convergence Analysis Of Recurrent Neural Networks
DOWNLOAD
Author : Zhang Yi
language : en
Publisher: Taylor & Francis US
Release Date : 2004

Convergence Analysis Of Recurrent Neural Networks written by Zhang Yi and has been published by Taylor & Francis US this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Computers categories.


This volume provides a comprehensive study of the convergence of recurrent neural networks, which has been increasingly used in applications relating to associative memory, image processing and pattern recognition. Throughout the book, the authors present their original research results of recent years. While the main objective is to disseminate these results in a unified and comprehensive manner, the book is also written to be helpful to readers requiring basic information, such as methods and tools commonly used in the analysis and design of recurrent neural networks. Audience: This volume is suitable for professionals and researchers, as well as advanced graduate level students in neural computations, and neural networks.



Grokking Machine Learning


Grokking Machine Learning
DOWNLOAD
Author : Luis Serrano
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-14

Grokking Machine Learning written by Luis Serrano and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-14 with Computers categories.


Grokking Machine Learning presents machine learning algorithms and techniques in a way that anyone can understand. This book skips the confused academic jargon and offers clear explanations that require only basic algebra. As you go, you'll build interesting projects with Python, including models for spam detection and image recognition. You'll also pick up practical skills for cleaning and preparing data.



Recurrent Neural Networks


Recurrent Neural Networks
DOWNLOAD
Author : Fathi M. Salem
language : en
Publisher: Springer Nature
Release Date : 2022-01-03

Recurrent Neural Networks written by Fathi M. Salem and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-03 with Technology & Engineering categories.


This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch. It provides a treatment of the general recurrent neural networks with principled methods for training that render the (generalized) backpropagation through time (BPTT). This author focuses on the basics and nuances of recurrent neural networks, providing technical and principled treatment of the subject, with a view toward using coding and deep learning computational frameworks, e.g., Python and Tensorflow-Keras. Recurrent neural networks are treated holistically from simple to gated architectures, adopting the technical machinery of adaptive non-convex optimization with dynamic constraints to leverage its systematic power in organizing the learning and training processes. This permits the flow of concepts and techniques that provide grounded support for design and training choices. The author’s approach enables strategic co-training of output layers, using supervised learning, and hidden layers, using unsupervised learning, to generate more efficient internal representations and accuracy performance. As a result, readers will be enabled to create designs tailoring proficient procedures for recurrent neural networks in their targeted applications.



Recurrent Neural Networks


Recurrent Neural Networks
DOWNLOAD
Author : Larry Medsker
language : en
Publisher: CRC Press
Release Date : 1999-12-20

Recurrent Neural Networks written by Larry Medsker and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-12-20 with Computers categories.


With existent uses ranging from motion detection to music synthesis to financial forecasting, recurrent neural networks have generated widespread attention. The tremendous interest in these networks drives Recurrent Neural Networks: Design and Applications, a summary of the design, applications, current research, and challenges of this subfield of artificial neural networks. This overview incorporates every aspect of recurrent neural networks. It outlines the wide variety of complex learning techniques and associated research projects. Each chapter addresses architectures, from fully connected to partially connected, including recurrent multilayer feedforward. It presents problems involving trajectories, control systems, and robotics, as well as RNN use in chaotic systems. The authors also share their expert knowledge of ideas for alternate designs and advances in theoretical aspects. The dynamical behavior of recurrent neural networks is useful for solving problems in science, engineering, and business. This approach will yield huge advances in the coming years. Recurrent Neural Networks illuminates the opportunities and provides you with a broad view of the current events in this rich field.



Supervised Sequence Labelling With Recurrent Neural Networks


Supervised Sequence Labelling With Recurrent Neural Networks
DOWNLOAD
Author : Alex Graves
language : en
Publisher: Springer
Release Date : 2012-02-06

Supervised Sequence Labelling With Recurrent Neural Networks written by Alex Graves and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-06 with Computers categories.


Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.



Recurrent Neural Networks For Temporal Data Processing


Recurrent Neural Networks For Temporal Data Processing
DOWNLOAD
Author : Hubert Cardot
language : en
Publisher: BoD – Books on Demand
Release Date : 2011-02-09

Recurrent Neural Networks For Temporal Data Processing written by Hubert Cardot and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-09 with Computers categories.


The RNNs (Recurrent Neural Networks) are a general case of artificial neural networks where the connections are not feed-forward ones only. In RNNs, connections between units form directed cycles, providing an implicit internal memory. Those RNNs are adapted to problems dealing with signals evolving through time. Their internal memory gives them the ability to naturally take time into account. Valuable approximation results have been obtained for dynamical systems.