[PDF] Regression For Categorical Data - eBooks Review

Regression For Categorical Data


Regression For Categorical Data
DOWNLOAD

Download Regression For Categorical Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regression For Categorical Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Regression For Categorical Data


Regression For Categorical Data
DOWNLOAD
Author : Gerhard Tutz
language : en
Publisher: Cambridge University Press
Release Date : 2011-11-21

Regression For Categorical Data written by Gerhard Tutz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-21 with Mathematics categories.


This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods, which provide excellent tools for prediction and the handling of both nominal and ordered categorical predictors. The book is accompanied an R package that contains data sets and code for all the examples.



Regression Models For Categorical Count And Related Variables


Regression Models For Categorical Count And Related Variables
DOWNLOAD
Author : John P. Hoffmann
language : en
Publisher: Univ of California Press
Release Date : 2016-08-16

Regression Models For Categorical Count And Related Variables written by John P. Hoffmann and has been published by Univ of California Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-16 with Mathematics categories.


Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists counting the number of offenses people commit, health scientists studying the number of suicides across neighborhoods, and psychologists modeling mental health treatment success are all interested in outcomes that are not continuous. Instead, they must measure and analyze these events and phenomena in a discrete manner. This book provides an introduction and overview of several statistical models designed for these types of outcomes—all presented with the assumption that the reader has only a good working knowledge of elementary algebra and has taken introductory statistics and linear regression analysis. Numerous examples from the social sciences demonstrate the practical applications of these models. The chapters address logistic and probit models, including those designed for ordinal and nominal variables, regular and zero-inflated Poisson and negative binomial models, event history models, models for longitudinal data, multilevel models, and data reduction techniques such as principal components and factor analysis. Each chapter discusses how to utilize the models and test their assumptions with the statistical software Stata, and also includes exercise sets so readers can practice using these techniques. Appendices show how to estimate the models in SAS, SPSS, and R; provide a review of regression assumptions using simulations; and discuss missing data. A companion website includes downloadable versions of all the data sets used in the book.



Regression Models For Categorical And Limited Dependent Variables


Regression Models For Categorical And Limited Dependent Variables
DOWNLOAD
Author : J. Scott Long
language : en
Publisher: SAGE
Release Date : 1997-01-09

Regression Models For Categorical And Limited Dependent Variables written by J. Scott Long and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-01-09 with Mathematics categories.


THE APPROACH "J. Scott Long′s approach is one that I highly commend. There is a decided emphasis on the application and interpretation of the specific statistical techniques. Long works from the premise that the major difficulty with the analysis of limited and categorical dependent variables (LCDVs) is the complexity of interpreting nonlinear models, and he provides tools for interpretation that can be widely applied across the different techniques." --Robert L. Kaufman, Sociology, Ohio State University "A thorough and comprehensive introduction to analyzing categorical and limited dependent variables from a traditional regression perspective that provides unusually clear discussions concerning estimation, identification, and the multiplicity of models available to the researcher to analyze such data." --Scott Hershberger, Psychology, University of Kansas THE ORGANIZATION "The thing that impresses me the most about this book is how organized it is. The chapters are in excellent logical sequence. There is a useful repetition of important concepts (e.g., estimation, hypothesis testing) from chapter to chapter. J. Scott Long has done a terrific job of organizing like things from disparate literatures, such as the scaler measures of fit in Chapter 4." --Herbert L. Smith, Sociology, University of Pennsylvania "A major strength of the book is the way that it is organized. The chapter about each technique is written in a highly organized and parallel format. First the statistical basis and assumptions for the particular model are developed, then estimation issues are considered, then issues of testing and interpretation are considered, then variations and extensions are explored." --Robert L. Kaufman, Sociology, Ohio State University FOR THE COURSE "I have been teaching a course on categorical data analysis to sociology graduate students for close to 20 years, but I have never found a book with which I was happy. J. Scott Long′s book, on the other hand, is nearly ideal for my objectives and preferences, and I expect that many other social scientists will feel the same way. I will definitely adopt it the next time I teach the course. It deals with the right topics in the most desirable sequence and it is clearly written." --Paul D. Allison, Sociology, University of Pennsylvania Class-tested at two major universities and written by an award-winning teacher, J. Scott Long′s book gives readers unified treatment of the most useful models for categorical and limited dependent variables (CLDVs). Throughout the book, the links among models are made explicit, and common methods of derivation, interpretation, and testing are applied. In addition, Long explains how models relate to linear regression models whenever possible. In order for the reader to see how these models can be applied, Long illustrates each model with data from a variety of applications, ranging from attitudes toward working mothers to scientific productivity. The book begins with a review of the linear regression model and an introduction to maximum likelihood estimation. It then covers the logit and probit models for binary outcomes--providing details on each of the ways in which these models can be interpreted, reviews standard statistical tests associated with maximum likelihood estimation, and considers a variety of measures for assessing the fit of a model. Long extends the binary logit and probit models to ordered outcomes, presents the multinomial and conditioned logit models for nominal outcomes, and considers models with censored and truncated dependent variables with a focus on the tobit model. He also describes models for sample selection bias and presents models for count outcomes by beginning with the Poisson regression model and showing how this model leads to the negative binomial model and zero inflated count models. He concludes by comparing and contrasting the models from earlier chapters and discussing the links between these models and models not discussed in the book, such as loglinear and event history models. Helpful exercises are included in the book with brief answers included in the appendix so that readers can practice the techniques as they read about them.



Regression Models For Categorical Dependent Variables Using Stata Second Edition


Regression Models For Categorical Dependent Variables Using Stata Second Edition
DOWNLOAD
Author : J. Scott Long
language : en
Publisher: Stata Press
Release Date : 2006

Regression Models For Categorical Dependent Variables Using Stata Second Edition written by J. Scott Long and has been published by Stata Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Computers categories.


The goal of the book is to make easier to carry out the computations necessary for the full interpretation of regression nonlinear models for categorical outcomes usign Stata.



Spss Statistics For Data Analysis And Visualization


Spss Statistics For Data Analysis And Visualization
DOWNLOAD
Author : Jesus Salcedo
language : en
Publisher: John Wiley & Sons
Release Date : 2017-04-20

Spss Statistics For Data Analysis And Visualization written by Jesus Salcedo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-20 with Computers categories.


Dive deeper into SPSS Statistics for more efficient, accurate, and sophisticated data analysis and visualization SPSS Statistics for Data Analysis and Visualization goes beyond the basics of SPSS Statistics to show you advanced techniques that exploit the full capabilities of SPSS. The authors explain when and why to use each technique, and then walk you through the execution with a pragmatic, nuts and bolts example. Coverage includes extensive, in-depth discussion of advanced statistical techniques, data visualization, predictive analytics, and SPSS programming, including automation and integration with other languages like R and Python. You'll learn the best methods to power through an analysis, with more efficient, elegant, and accurate code. IBM SPSS Statistics is complex: true mastery requires a deep understanding of statistical theory, the user interface, and programming. Most users don't encounter all of the methods SPSS offers, leaving many little-known modules undiscovered. This book walks you through tools you may have never noticed, and shows you how they can be used to streamline your workflow and enable you to produce more accurate results. Conduct a more efficient and accurate analysis Display complex relationships and create better visualizations Model complex interactions and master predictive analytics Integrate R and Python with SPSS Statistics for more efficient, more powerful code These "hidden tools" can help you produce charts that simply wouldn't be possible any other way, and the support for other programming languages gives you better options for solving complex problems. If you're ready to take advantage of everything this powerful software package has to offer, SPSS Statistics for Data Analysis and Visualization is the expert-led training you need.



An Introduction To Categorical Data Analysis


An Introduction To Categorical Data Analysis
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: John Wiley & Sons
Release Date : 2018-11-20

An Introduction To Categorical Data Analysis written by Alan Agresti and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-20 with Mathematics categories.


A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.



Regression Analysis For Categorical Moderators


Regression Analysis For Categorical Moderators
DOWNLOAD
Author : Herman Aguinis
language : en
Publisher: Guilford Press
Release Date : 2004-01-01

Regression Analysis For Categorical Moderators written by Herman Aguinis and has been published by Guilford Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-01-01 with Social Science categories.


Does the stability of personality vary by gender or ethnicity? Does a particular therapy work better to treat clients with one type of personality disorder than those with another? Providing a solution to thorny problems such as these, Aguinis shows readers how to better assess whether the relationship between two variables is moderated by group membership through the use of a statistical technique, moderated multiple regression (MMR). Clearly written, the book requires only basic knowledge of inferential statistics. It helps students, researchers, and practitioners determine whether a particular intervention is likely to yield dissimilar outcomes for members of various groups. Associated computer programs and data sets are available at the author's website (http: //mypage.iu.edu/ haguinis/mmr).



Categorical Data Analysis For The Behavioral And Social Sciences


Categorical Data Analysis For The Behavioral And Social Sciences
DOWNLOAD
Author : Razia Azen
language : en
Publisher: Taylor & Francis
Release Date : 2021-05-26

Categorical Data Analysis For The Behavioral And Social Sciences written by Razia Azen and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-26 with Psychology categories.


Featuring a practical approach with numerous examples, the second edition of Categorical Data Analysis for the Behavioral and Social Sciences focuses on helping the reader develop a conceptual understanding of categorical methods, making it a much more accessible text than others on the market. The authors cover common categorical analysis methods and emphasize specific research questions that can be addressed by each analytic procedure, including how to obtain results using SPSS, SAS, and R, so that readers are able to address the research questions they wish to answer. Each chapter begins with a "Look Ahead" section to highlight key content. This is followed by an in-depth focus and explanation of the relationship between the initial research question, the use of software to perform the analyses, and how to interpret the output substantively. Included at the end of each chapter are a range of software examples and questions to test knowledge. New to the second edition: The addition of R syntax for all analyses and an update of SPSS and SAS syntax. The addition of a new chapter on GLMMs. Clarification of concepts and ideas that graduate students found confusing, including revised problems at the end of the chapters. Written for those without an extensive mathematical background, this book is ideal for a graduate course in categorical data analysis taught in departments of psychology, educational psychology, human development and family studies, sociology, public health, and business. Researchers in these disciplines interested in applying these procedures will also appreciate this book’s accessible approach.



Categorical Data Analysis And Multilevel Modeling Using R


Categorical Data Analysis And Multilevel Modeling Using R
DOWNLOAD
Author : Xing Liu
language : en
Publisher: SAGE Publications
Release Date : 2022-02-25

Categorical Data Analysis And Multilevel Modeling Using R written by Xing Liu and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-25 with Social Science categories.


Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains datasets and R commands used in the book for students, and solutions for the end-of-chapter exercises on the instructor site.



Analysis Of Ordinal Categorical Data


Analysis Of Ordinal Categorical Data
DOWNLOAD
Author : Alan Agresti
language : en
Publisher: John Wiley & Sons
Release Date : 2012-07-06

Analysis Of Ordinal Categorical Data written by Alan Agresti and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-06 with Mathematics categories.


Statistical science’s first coordinated manual of methods for analyzing ordered categorical data, now fully revised and updated, continues to present applications and case studies in fields as diverse as sociology, public health, ecology, marketing, and pharmacy. Analysis of Ordinal Categorical Data, Second Edition provides an introduction to basic descriptive and inferential methods for categorical data, giving thorough coverage of new developments and recent methods. Special emphasis is placed on interpretation and application of methods including an integrated comparison of the available strategies for analyzing ordinal data. Practitioners of statistics in government, industry (particularly pharmaceutical), and academia will want this new edition.