Regular Differential Forms

DOWNLOAD
Download Regular Differential Forms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regular Differential Forms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Differential Forms And Applications
DOWNLOAD
Author : Manfredo P. Do Carmo
language : en
Publisher: Springer Science & Business Media
Release Date : 1998-05-20
Differential Forms And Applications written by Manfredo P. Do Carmo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-05-20 with Mathematics categories.
An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.
Regular Differential Forms
DOWNLOAD
Author : Ernst Kunz
language : en
Publisher: American Mathematical Soc.
Release Date : 1988
Regular Differential Forms written by Ernst Kunz and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988 with Mathematics categories.
Suitable for students and researchers in commutative algebra, algebraic geometry, and neighboring disciplines, this book introduces various sheaves of differential forms for equidimensional morphisms of finite type between noetherian schemes, the most important being the sheaf of regular differential forms.
Differential Forms And Connections
DOWNLOAD
Author : R. W. R. Darling
language : en
Publisher: Cambridge University Press
Release Date : 1994-09-22
Differential Forms And Connections written by R. W. R. Darling and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-09-22 with Mathematics categories.
Introducing the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--this textbook covers both classical surface theory, the modern theory of connections, and curvature. With no knowledge of topology assumed, the only prerequisites are multivariate calculus and linear algebra.
A Concise Introduction To Algebraic Varieties
DOWNLOAD
Author : Brian Osserman
language : en
Publisher: American Mathematical Society
Release Date : 2021-12-06
A Concise Introduction To Algebraic Varieties written by Brian Osserman and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-06 with Mathematics categories.
A Concise Introduction to Algebraic Varieties is designed for a one-term introductory course on algebraic varieties over an algebraically closed field, and it provides a solid basis for a course on schemes and cohomology or on specialized topics, such as toric varieties and moduli spaces of curves. The book balances generality and accessibility by presenting local and global concepts, such as nonsingularity, normality, and completeness using the language of atlases, an approach that is most commonly associated with differential topology. The book concludes with a discussion of the Riemann-Roch theorem, the Brill-Noether theorem, and applications. The prerequisites for the book are a strong undergraduate algebra course and a working familiarity with basic point-set topology. A course in graduate algebra is helpful but not required. The book includes appendices presenting useful background in complex analytic topology and commutative algebra and provides plentiful examples and exercises that help build intuition and familiarity with algebraic varieties.
Commutative Ring Theory
DOWNLOAD
Author : Hideyuki Matsumura
language : en
Publisher: Cambridge University Press
Release Date : 1989-05-25
Commutative Ring Theory written by Hideyuki Matsumura and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-05-25 with Mathematics categories.
This book explores commutative ring theory, an important a foundation for algebraic geometry and complex analytical geometry.
The Pullback Equation For Differential Forms
DOWNLOAD
Author : Gyula Csató
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-11-12
The Pullback Equation For Differential Forms written by Gyula Csató and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-12 with Mathematics categories.
An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ≤ k ≤ n–1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1≤ k ≤ n–1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.
Basic Algebraic Geometry 2
DOWNLOAD
Author : Igor R. Shafarevich
language : en
Publisher: Springer
Release Date : 2012-11-27
Basic Algebraic Geometry 2 written by Igor R. Shafarevich and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-27 with Mathematics categories.
The second volume of Shafarevich's introductory book on algebraic varieties and complex manifolds. As with Volume 1, the author has revised the text and added new material, e.g. as a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum, making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as those in theoretical physics.
The Moduli Problem For Plane Branches
DOWNLOAD
Author : Oscar Zariski
language : en
Publisher: American Mathematical Soc.
Release Date : 2006
The Moduli Problem For Plane Branches written by Oscar Zariski and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.
Moduli problems in algebraic geometry date back to Riemann's famous count of the $3g-3$ parameters needed to determine a curve of genus $g$. In this book, Zariski studies the moduli space of curves of the same equisingularity class. After setting up and reviewing the basic material, Zariski devotes one chapter to the topology of the moduli space, including an explicit determination of the rare cases when the space is compact. Chapter V looks at specific examples where the dimension of the generic component can be determined through rather concrete methods. Zariski's last chapter concerns the application of deformation theory to the moduli problem, including the determination of the dimension of the generic component for a particular family of curves. An appendix by Bernard Teissier reconsiders the moduli problem from the point of view of deformation theory. He gives new proofs of some of Zariski's results, as well as a natural construction of a compactification of the moduli space.
Introduction To Coding Theory And Algebraic Geometry
DOWNLOAD
Author : J. van Lint
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06
Introduction To Coding Theory And Algebraic Geometry written by J. van Lint and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Social Science categories.
These notes are based on lectures given in the semmar on "Coding Theory and Algebraic Geometry" held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course
Basic Algebraic Geometry
DOWNLOAD
Author : I.R. Shafarevich
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Basic Algebraic Geometry written by I.R. Shafarevich and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Algebraic geometry occupied a central place in the mathematics of the last century. The deepest results of Abel, Riemann, Weierstrass, many of the most important papers of Klein and Poincare belong to this do mam. At the end of the last and the beginning of the present century the attitude towards algebraic geometry changed abruptly. Around 1910 Klein wrote: "When I was a student, Abelian functions*-as an after-effect of Jacobi's tradition-were regarded as the undIsputed summit of mathe matics, and each of us, as a matter of course, had the ambition to forge ahead in this field. And now? The young generation hardly know what Abelian functions are." (Vorlesungen tiber die Entwicklung der Mathe matik im XIX. Jahrhundert, Springer-Verlag, Berlin 1926, Seite 312). The style of thinking that was fully developed in algebraic geometry at that time was too far removed from the set-theoretical and axio matic spirit, which then determined the development of mathematics. Several decades had to lapse before the rise of the theory of topolo gical, differentiable and complex manifolds, the general theory of fields, the theory of ideals in sufficiently general rings, and only then it became possible to construct algebraic geometry on the basis of the principles of set-theoretical mathematics. Around the middle of the present century algebraic geometry had undergone to a large extent such a reshaping process. As a result, it can again lay claim to the position it once occupied in mathematics