[PDF] Regularity Of Minimal Surfaces - eBooks Review

Regularity Of Minimal Surfaces


Regularity Of Minimal Surfaces
DOWNLOAD

Download Regularity Of Minimal Surfaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regularity Of Minimal Surfaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Minimal Surfaces And Functions Of Bounded Variation


Minimal Surfaces And Functions Of Bounded Variation
DOWNLOAD
Author : Giusti
language : en
Publisher: Springer Science & Business Media
Release Date : 1984-01-01

Minimal Surfaces And Functions Of Bounded Variation written by Giusti and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984-01-01 with Mathematics categories.


The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].



Minimal Surfaces And Functions Of Bounded Variation


Minimal Surfaces And Functions Of Bounded Variation
DOWNLOAD
Author : Giusti
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Minimal Surfaces And Functions Of Bounded Variation written by Giusti and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].



Minimal Surfaces


Minimal Surfaces
DOWNLOAD
Author : Ulrich Dierkes
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-16

Minimal Surfaces written by Ulrich Dierkes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-16 with Mathematics categories.


Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem andTomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.



A Course In Minimal Surfaces


A Course In Minimal Surfaces
DOWNLOAD
Author : Tobias Holck Colding
language : en
Publisher: American Mathematical Society
Release Date : 2024-01-18

A Course In Minimal Surfaces written by Tobias Holck Colding and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-18 with Mathematics categories.


Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.



Fully Nonlinear Elliptic Equations


Fully Nonlinear Elliptic Equations
DOWNLOAD
Author : Luis A. Caffarelli
language : en
Publisher: American Mathematical Soc.
Release Date : 1995

Fully Nonlinear Elliptic Equations written by Luis A. Caffarelli and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Mathematics categories.


The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.



Regularity Of Minimal Surfaces


Regularity Of Minimal Surfaces
DOWNLOAD
Author : Ulrich Dierkes
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-16

Regularity Of Minimal Surfaces written by Ulrich Dierkes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-16 with Mathematics categories.


Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.



Existence And Regularity Of Minimal Surfaces On Riemannian Manifolds


Existence And Regularity Of Minimal Surfaces On Riemannian Manifolds
DOWNLOAD
Author : Jon T. Pitts
language : en
Publisher: Princeton University Press
Release Date : 2014-07-14

Existence And Regularity Of Minimal Surfaces On Riemannian Manifolds written by Jon T. Pitts and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-14 with Mathematics categories.


Mathematical No/ex, 27 Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.



Minimal Surfaces Global Analysis Of Minimal Surfaces


Minimal Surfaces Global Analysis Of Minimal Surfaces
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2010

Minimal Surfaces Global Analysis Of Minimal Surfaces written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Boundary value problems categories.




Regularity Theory For Mean Curvature Flow


Regularity Theory For Mean Curvature Flow
DOWNLOAD
Author : Klaus Ecker
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Regularity Theory For Mean Curvature Flow written by Klaus Ecker and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.



Seminar On Minimal Submanifolds Am 103 Volume 103


Seminar On Minimal Submanifolds Am 103 Volume 103
DOWNLOAD
Author : Enrico Bombieri
language : en
Publisher: Princeton University Press
Release Date : 2016-03-02

Seminar On Minimal Submanifolds Am 103 Volume 103 written by Enrico Bombieri and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-02 with Mathematics categories.


A classic treatment of minimal submanifolds from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.