Rfm Analysis And K Means Clustering A Case Study Analysis Clustering And Prediction On Retail Store Transactions With Python Gui


Rfm Analysis And K Means Clustering A Case Study Analysis Clustering And Prediction On Retail Store Transactions With Python Gui
DOWNLOAD

Download Rfm Analysis And K Means Clustering A Case Study Analysis Clustering And Prediction On Retail Store Transactions With Python Gui PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Rfm Analysis And K Means Clustering A Case Study Analysis Clustering And Prediction On Retail Store Transactions With Python Gui book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Three Data Science Projects For Rfm Analysis K Means Clustering And Machine Learning Based Prediction With Python Gui


Three Data Science Projects For Rfm Analysis K Means Clustering And Machine Learning Based Prediction With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-05-11

Three Data Science Projects For Rfm Analysis K Means Clustering And Machine Learning Based Prediction With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-11 with Computers categories.


PROJECT 1: RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI The dataset used in this project is the detailed data on sales of consumer goods obtained by ‘scanning’ the bar codes for individual products at electronic points of sale in a retail store. The dataset provides detailed information about quantities, characteristics and values of goods sold as well as their prices. The anonymized dataset includes 64.682 transactions of 5.242 SKU's sold to 22.625 customers during one year. Dataset Attributes are as follows: Date of Sales Transaction, Customer ID, Transaction ID, SKU Category ID, SKU ID, Quantity Sold, and Sales Amount (Unit price times quantity. For unit price, please divide Sales Amount by Quantity). This dataset can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DATA SCIENCE FOR GROCERIES MARKET ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON GUI RFM analysis used in this project can be used as a marketing technique used to quantitatively rank and group customers based on the recency, frequency and monetary total of their recent transactions to identify the best customers and perform targeted marketing campaigns. The idea is to segment customers based on when their last purchase was, how often they've purchased in the past, and how much they've spent overall. Clustering, in this case K-Means algorithm, used in this project can be used to place similar customers into mutually exclusive groups; these groups are known as “segments” while the act of grouping is known as segmentation. Segmentation allows businesses to identify the different types and preferences of customers/markets they serve. This is crucial information to have to develop highly effective marketing, product, and business strategies. The dataset in this project has 38765 rows of the purchase orders of people from the grocery stores. These orders can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.



Rfm Analysis And K Means Clustering A Case Study Analysis Clustering And Prediction On Retail Store Transactions With Python Gui


Rfm Analysis And K Means Clustering A Case Study Analysis Clustering And Prediction On Retail Store Transactions With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-07-07

Rfm Analysis And K Means Clustering A Case Study Analysis Clustering And Prediction On Retail Store Transactions With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-07 with Computers categories.


In this case study, we will explore RFM (Recency, Frequency, Monetary) analysis and K-means clustering techniques for retail store transaction data. RFM analysis is a powerful method for understanding customer behavior by segmenting them based on their transaction history. K-means clustering is a popular unsupervised machine learning algorithm used for grouping similar data points. We will leverage these techniques to gain insights, perform customer segmentation, and make predictions on retail store transactions. The case study involves a retail store dataset that contains transaction records, including customer IDs, transaction dates, purchase amounts, and other relevant information. This dataset serves as the foundation for our RFM analysis and clustering. RFM analysis involves evaluating three key aspects of customer behavior: recency, frequency, and monetary value. Recency refers to the time since a customer's last transaction, frequency measures the number of transactions made by a customer, and monetary value represents the total amount spent by a customer. By analyzing these dimensions, we can segment customers into different groups based on their purchasing patterns. Before conducting RFM analysis, we need to preprocess and transform the raw transaction data. This includes cleaning the data, aggregating it at the customer level, and calculating the recency, frequency, and monetary metrics for each customer. These transformed RFM metrics will be used for segmentation and clustering. Using the RFM metrics, we can apply clustering algorithms such as K-means to group customers with similar behaviors together. K-means clustering aims to partition the data into a predefined number of clusters based on their feature similarities. By clustering customers, we can identify distinct groups with different purchasing behaviors and tailor marketing strategies accordingly. K-means is an iterative algorithm that assigns data points to clusters in a way that minimizes the within-cluster sum of squares. It starts by randomly initializing cluster centers and then iteratively updates them until convergence. The resulting clusters represent distinct customer segments based on their RFM metrics. To determine the optimal number of clusters for our K-means analysis, we can employ elbow method. This method help us identify the number of clusters that provide the best balance between intra-cluster similarity and inter-cluster dissimilarity. Once the K-means algorithm has assigned customers to clusters, we can analyze the characteristics of each cluster. This involves examining the RFM metrics and other relevant customer attributes within each cluster. By understanding the distinct behavior patterns of each cluster, we can tailor marketing strategies and make targeted business decisions. Visualizations play a crucial role in presenting the results of RFM analysis and K-means clustering. We can create various visual representations, such as scatter plots, bar charts, and heatmaps, to showcase the distribution of customers across clusters and the differences in RFM metrics between clusters. These visualizations provide intuitive insights into customer segmentation. The objective of this data science project is to analyze and predict customer behavior in the groceries market using Python and create a graphical user interface (GUI) using PyQt. The project encompasses various stages, starting from exploring the dataset and visualizing the distribution of features to RFM analysis, K-means clustering, predicting clusters with machine learning algorithms, and implementing a GUI for user interaction. Once we have the clusters, we can utilize machine learning algorithms to predict the cluster for new or unseen customers. We train various models, including logistic regression, support vector machines, decision trees, k-nearest neighbors, random forests, gradient boosting, naive Bayes, adaboost, XGBoost, and LightGBM, on the clustered data. These models learn the patterns and relationships between customer features and their assigned clusters, enabling us to predict the cluster for new customers accurately. To evaluate the performance of our models, we utilize metrics such as accuracy, precision, recall, and F1-score. These metrics allow us to measure the models' predictive capabilities and compare their performance across different algorithms and preprocessing techniques. By assessing the models' performance, we can select the most suitable model for cluster prediction in the groceries market analysis. In addition to the analysis and prediction components, this project aims to provide a user-friendly interface for interaction and visualization. To achieve this, we implement a GUI using PyQt, a Python library for creating desktop applications. The GUI allows users to input new customer data and predict the corresponding cluster based on the trained models. It provides visualizations of the analysis results, including cluster distributions, confusion matrices, and decision boundaries. The GUI allows users to select different machine learning models and preprocessing techniques through radio buttons or dropdown menus. This flexibility empowers users to explore and compare the performance of various models, enabling them to choose the most suitable approach for their specific needs. The GUI's interactive nature enhances the usability of the project and promotes effective decision-making based on the analysis results.



Tkinter Data Science And Machine Learning


Tkinter Data Science And Machine Learning
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-09-02

Tkinter Data Science And Machine Learning written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-02 with Computers categories.


In this project, we embarked on a comprehensive journey through the world of machine learning and model evaluation. Our primary goal was to develop a Tkinter GUI and assess various machine learning models on a given dataset to identify the best-performing one. This process is essential in solving real-world problems, as it helps us select the most suitable algorithm for a specific task. By crafting this Tkinter-powered GUI, we provided an accessible and user-friendly interface for users engaging with machine learning models. It simplified intricate processes, allowing users to load data, select models, initiate training, and visualize results without necessitating code expertise or command-line operations. This GUI introduced a higher degree of usability and accessibility to the machine learning workflow, accommodating users with diverse levels of technical proficiency. We began by loading and preprocessing the dataset, a fundamental step in any machine learning project. Proper data preprocessing involves tasks such as handling missing values, encoding categorical features, and scaling numerical attributes. These operations ensure that the data is in a format suitable for training and testing machine learning models. Once our data was ready, we moved on to the model selection phase. We evaluated multiple machine learning algorithms, each with its strengths and weaknesses. The models we explored included Logistic Regression, Random Forest, K-Nearest Neighbors (KNN), Decision Trees, Gradient Boosting, Extreme Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), and Support Vector Classifier (SVC). For each model, we employed a systematic approach to find the best hyperparameters using grid search with cross-validation. This technique allowed us to explore different combinations of hyperparameters and select the configuration that yielded the highest accuracy on the training data. These hyperparameters included settings like the number of estimators, learning rate, and kernel function, depending on the specific model. After obtaining the best hyperparameters for each model, we trained them on our preprocessed dataset. This training process involved using the training data to teach the model to make predictions on new, unseen examples. Once trained, the models were ready for evaluation. We assessed the performance of each model using a set of well-established evaluation metrics. These metrics included accuracy, precision, recall, and F1-score. Accuracy measured the overall correctness of predictions, while precision quantified the proportion of true positive predictions out of all positive predictions. Recall, on the other hand, represented the proportion of true positive predictions out of all actual positives, highlighting a model's ability to identify positive cases. The F1-score combined precision and recall into a single metric, helping us gauge the overall balance between these two aspects. To visualize the model's performance, we created key graphical representations. These included confusion matrices, which showed the number of true positive, true negative, false positive, and false negative predictions, aiding in understanding the model's classification results. Additionally, we generated Receiver Operating Characteristic (ROC) curves and area under the curve (AUC) scores, which depicted a model's ability to distinguish between classes. High AUC values indicated excellent model performance. Furthermore, we constructed true values versus predicted values diagrams to provide insights into how well our models aligned with the actual data distribution. Learning curves were also generated to observe a model's performance as a function of training data size, helping us assess whether the model was overfitting or underfitting. Lastly, we presented the results in a clear and organized manner, saving them to Excel files for easy reference. This allowed us to compare the performance of different models and make an informed choice about which one to select for our specific task. In summary, this project was a comprehensive exploration of the machine learning model development and evaluation process. We prepared the data, selected and fine-tuned various models, assessed their performance using multiple metrics and visualizations, and ultimately arrived at a well-informed decision about the most suitable model for our dataset. This approach serves as a valuable blueprint for tackling real-world machine learning challenges effectively.



Data Visualization Time Series Forecasting And Prediction Using Machine Learning With Tkinter


Data Visualization Time Series Forecasting And Prediction Using Machine Learning With Tkinter
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-09-06

Data Visualization Time Series Forecasting And Prediction Using Machine Learning With Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-06 with Computers categories.


This "Data Visualization, Time-Series Forecasting, and Prediction using Machine Learning with Tkinter" project is a comprehensive and multifaceted application that leverages data visualization, time-series forecasting, and machine learning techniques to gain insights into bitcoin data and make predictions. This project serves as a valuable tool for financial analysts, traders, and investors seeking to make informed decisions in the stock market. The project begins with data visualization, where historical bitcoin market data is visually represented using various plots and charts. This provides users with an intuitive understanding of the data's trends, patterns, and fluctuations. Features distribution analysis is conducted to assess the statistical properties of the dataset, helping users identify key characteristics that may impact forecasting and prediction. One of the project's core functionalities is time-series forecasting. Through a user-friendly interface built with Tkinter, users can select a stock symbol and specify the time horizon for forecasting. The project supports multiple machine learning regressors, such as Linear Regression, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, Lasso, Ridge, AdaBoost, and KNN, allowing users to choose the most suitable algorithm for their forecasting needs. Time-series forecasting is crucial for making predictions about stock prices, which is essential for investment strategies. The project employs various machine learning regressors to predict the adjusted closing price of bitcoin stock. By training these models on historical data, users can obtain predictions for future adjusted closing prices. This information is invaluable for traders and investors looking to make buy or sell decisions. The project also incorporates hyperparameter tuning and cross-validation to enhance the accuracy of these predictions. These models employ metrics such as Mean Absolute Error (MAE), which quantifies the average absolute discrepancy between predicted values and actual values. Lower MAE values signify superior model performance. Additionally, Mean Squared Error (MSE) is used to calculate the average squared differences between predicted and actual values, with lower MSE values indicating better model performance. Root Mean Squared Error (RMSE), derived from MSE, provides insights in the same units as the target variable and is valued for its lower values, denoting superior performance. Lastly, R-squared (R2) evaluates the fraction of variance in the target variable that can be predicted from independent variables, with higher values signifying better model fit. An R2 of 1 implies a perfect model fit. In addition to close price forecasting, the project extends its capabilities to predict daily returns. By implementing grid search, users can fine-tune the hyperparameters of machine learning models such as Random Forests, Gradient Boosting, Support Vector, Decision Tree, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, and AdaBoost Classifiers. This optimization process aims to maximize the predictive accuracy of daily returns. Accurate daily return predictions are essential for assessing risk and formulating effective trading strategies. Key metrics in these classifiers encompass Accuracy, which represents the ratio of correctly predicted instances to the total number of instances, Precision, which measures the proportion of true positive predictions among all positive predictions, and Recall (also known as Sensitivity or True Positive Rate), which assesses the proportion of true positive predictions among all actual positive instances. The F1-Score serves as the harmonic mean of Precision and Recall, offering a balanced evaluation, especially when considering the trade-off between false positives and false negatives. The ROC Curve illustrates the trade-off between Recall and False Positive Rate, while the Area Under the ROC Curve (AUC-ROC) summarizes this trade-off. The Confusion Matrix provides a comprehensive view of classifier performance by detailing true positives, true negatives, false positives, and false negatives, facilitating the computation of various metrics like accuracy, precision, and recall. The selection of these metrics hinges on the project's specific objectives and the characteristics of the dataset, ensuring alignment with the intended goals and the ramifications of false positives and false negatives, which hold particular significance in financial contexts where decisions can have profound consequences. Overall, the "Data Visualization, Time-Series Forecasting, and Prediction using Machine Learning with Tkinter" project serves as a powerful and user-friendly platform for financial data analysis and decision-making. It bridges the gap between complex machine learning techniques and accessible user interfaces, making financial analysis and prediction more accessible to a broader audience. With its comprehensive features, this project empowers users to gain insights from historical data, make informed investment decisions, and develop effective trading strategies in the dynamic world of finance. You can download the dataset from: http://viviansiahaan.blogspot.com/2023/09/data-visualization-time-series.html.



Six Books In One Classification Prediction And Sentiment Analysis Using Machine Learning And Deep Learning With Python Gui


Six Books In One Classification Prediction And Sentiment Analysis Using Machine Learning And Deep Learning With Python Gui
DOWNLOAD

Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-04-11

Six Books In One Classification Prediction And Sentiment Analysis Using Machine Learning And Deep Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-11 with Computers categories.


Book 1: BANK LOAN STATUS CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of more than 100,000 customers mentioning their loan status, current loan amount, monthly debt, etc. There are 19 features in the dataset. The dataset attributes are as follows: Loan ID, Customer ID, Loan Status, Current Loan Amount, Term, Credit Score, Annual Income, Years in current job, Home Ownership, Purpose, Monthly Debt, Years of Credit History, Months since last delinquent, Number of Open Accounts, Number of Credit Problems, Current Credit Balance, Maximum Open Credit, Bankruptcies, and Tax Liens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 2: OPINION MINING AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI Opinion mining (sometimes known as sentiment analysis or emotion AI) refers to the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. This dataset was created for the Paper 'From Group to Individual Labels using Deep Features', Kotzias et. al,. KDD 2015. It contains sentences labelled with a positive or negative sentiment. Score is either 1 (for positive) or 0 (for negative). The sentences come from three different websites/fields: imdb.com, amazon.com, and yelp.com. For each website, there exist 500 positive and 500 negative sentences. Those were selected randomly for larger datasets of reviews. Amazon: contains reviews and scores for products sold on amazon.com in the cell phones and accessories category, and is part of the dataset collected by McAuley and Leskovec. Scores are on an integer scale from 1 to 5. Reviews considered with a score of 4 and 5 to be positive, and scores of 1 and 2 to be negative. The data is randomly partitioned into two halves of 50%, one for training and one for testing, with 35,000 documents in each set. IMDb: refers to the IMDb movie review sentiment dataset originally introduced by Maas et al. as a benchmark for sentiment analysis. This dataset contains a total of 100,000 movie reviews posted on imdb.com. There are 50,000 unlabeled reviews and the remaining 50,000 are divided into a set of 25,000 reviews for training and 25,000 reviews for testing. Each of the labeled reviews has a binary sentiment label, either positive or negative. Yelp: refers to the dataset from the Yelp dataset challenge from which we extracted the restaurant reviews. Scores are on an integer scale from 1 to 5. Reviews considered with scores 4 and 5 to be positive, and 1 and 2 to be negative. The data is randomly generated a 50-50 training and testing split, which led to approximately 300,000 documents for each set. Sentences: for each of the datasets above, labels are extracted and manually 1000 sentences are manually labeled from the test set, with 50% positive sentiment and 50% negative sentiment. These sentences are only used to evaluate our instance-level classifier for each dataset3. They are not used for model training, to maintain consistency with our overall goal of learning at a group level and predicting at the instance level. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 3: EMOTION PREDICTION FROM TEXT USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI In the dataset used in this project, there are two columns, Text and Emotion. Quite self-explanatory. The Emotion column has various categories ranging from happiness to sadness to love and fear. You will build and implement machine learning and deep learning models which can identify what words denote what emotion. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 4: HATE SPEECH DETECTION AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI The objective of this task is to detect hate speech in tweets. For the sake of simplicity, a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets. Formally, given a training sample of tweets and labels, where label '1' denotes the tweet is racist/sexist and label '0' denotes the tweet is not racist/sexist, the objective is to predict the labels on the test dataset. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, LSTM, and CNN. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 5: TRAVEL REVIEW RATING CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project has been sourced from the Machine Learning Repository of University of California, Irvine (UC Irvine): Travel Review Ratings Data Set. This dataset is populated by capturing user ratings from Google reviews. Reviews on attractions from 24 categories across Europe are considered. Google user rating ranges from 1 to 5 and average user rating per category is calculated. The attributes in the dataset are as follows: Attribute 1 : Unique user id; Attribute 2 : Average ratings on churches; Attribute 3 : Average ratings on resorts; Attribute 4 : Average ratings on beaches; Attribute 5 : Average ratings on parks; Attribute 6 : Average ratings on theatres; Attribute 7 : Average ratings on museums; Attribute 8 : Average ratings on malls; Attribute 9 : Average ratings on zoo; Attribute 10 : Average ratings on restaurants; Attribute 11 : Average ratings on pubs/bars; Attribute 12 : Average ratings on local services; Attribute 13 : Average ratings on burger/pizza shops; Attribute 14 : Average ratings on hotels/other lodgings; Attribute 15 : Average ratings on juice bars; Attribute 16 : Average ratings on art galleries; Attribute 17 : Average ratings on dance clubs; Attribute 18 : Average ratings on swimming pools; Attribute 19 : Average ratings on gyms; Attribute 20 : Average ratings on bakeries; Attribute 21 : Average ratings on beauty & spas; Attribute 22 : Average ratings on cafes; Attribute 23 : Average ratings on view points; Attribute 24 : Average ratings on monuments; and Attribute 25 : Average ratings on gardens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 6: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.



Advances In K Means Clustering


Advances In K Means Clustering
DOWNLOAD

Author : Junjie Wu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-07-09

Advances In K Means Clustering written by Junjie Wu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-09 with Computers categories.


Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.



Clustering


Clustering
DOWNLOAD

Author : Boris Mirkin
language : en
Publisher: CRC Press
Release Date : 2012-10-17

Clustering written by Boris Mirkin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-17 with Business & Economics categories.


Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods—K-Means for partitioning and Ward's method for hierarchical clustering—have lacked the theoretical underpinning required to establish a firm relationship between the two methods and relevant interpretation aids. Other approaches, such as spectral clustering or consensus clustering, are considered absolutely unrelated to each other or to the two above mentioned methods. Clustering: A Data Recovery Approach, Second Edition presents a unified modeling approach for the most popular clustering methods: the K-Means and hierarchical techniques, especially for divisive clustering. It significantly expands coverage of the mathematics of data recovery, and includes a new chapter covering more recent popular network clustering approaches—spectral, modularity and uniform, additive, and consensus—treated within the same data recovery approach. Another added chapter covers cluster validation and interpretation, including recent developments for ontology-driven interpretation of clusters. Altogether, the insertions added a hundred pages to the book, even in spite of the fact that fragments unrelated to the main topics were removed. Illustrated using a set of small real-world datasets and more than a hundred examples, the book is oriented towards students, practitioners, and theoreticians of cluster analysis. Covering topics that are beyond the scope of most texts, the author’s explanations of data recovery methods, theory-based advice, pre- and post-processing issues and his clear, practical instructions for real-world data mining make this book ideally suited for teaching, self-study, and professional reference.



Intelligent And Fuzzy Techniques For Emerging Conditions And Digital Transformation


Intelligent And Fuzzy Techniques For Emerging Conditions And Digital Transformation
DOWNLOAD

Author : Cengiz Kahraman
language : en
Publisher: Springer Nature
Release Date : 2021-08-23

Intelligent And Fuzzy Techniques For Emerging Conditions And Digital Transformation written by Cengiz Kahraman and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-23 with Technology & Engineering categories.


This book presents recent research in intelligent and fuzzy techniques. Emerging conditions such as pandemic, wars, natural disasters and various high technologies force people for significant changes in business and social life. The adoption of digital technologies to transform services or businesses, through replacing non-digital or manual processes with digital processes or replacing older digital technology with newer digital technologies through intelligent systems is the main scope of this book. It focuses on revealing the reflection of digital transformation in our business and social life under emerging conditions through intelligent and fuzzy systems. The latest intelligent and fuzzy methods and techniques on digital transformation are introduced by theory and applications. The intended readers are intelligent and fuzzy systems researchers, lecturers, M.Sc. and Ph.D. students studying digital transformation. Usage of ordinary fuzzy sets and their extensions, heuristics and metaheuristics from optimization to machine learning, from quality management to risk management makes the book an excellent source for researchers.



Business And Consumer Analytics New Ideas


Business And Consumer Analytics New Ideas
DOWNLOAD

Author : Pablo Moscato
language : en
Publisher: Springer
Release Date : 2019-05-30

Business And Consumer Analytics New Ideas written by Pablo Moscato and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-30 with Computers categories.


This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook.



Big Data Analytics With Java


Big Data Analytics With Java
DOWNLOAD

Author : Rajat Mehta
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-31

Big Data Analytics With Java written by Rajat Mehta and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-31 with Computers categories.


Learn the basics of analytics on big data using Java, machine learning and other big data tools About This Book Acquire real-world set of tools for building enterprise level data science applications Surpasses the barrier of other languages in data science and learn create useful object-oriented codes Extensive use of Java compliant big data tools like apache spark, Hadoop, etc. Who This Book Is For This book is for Java developers who are looking to perform data analysis in production environment. Those who wish to implement data analysis in their Big data applications will find this book helpful. What You Will Learn Start from simple analytic tasks on big data Get into more complex tasks with predictive analytics on big data using machine learning Learn real time analytic tasks Understand the concepts with examples and case studies Prepare and refine data for analysis Create charts in order to understand the data See various real-world datasets In Detail This book covers case studies such as sentiment analysis on a tweet dataset, recommendations on a movielens dataset, customer segmentation on an ecommerce dataset, and graph analysis on actual flights dataset. This book is an end-to-end guide to implement analytics on big data with Java. Java is the de facto language for major big data environments, including Hadoop. This book will teach you how to perform analytics on big data with production-friendly Java. This book basically divided into two sections. The first part is an introduction that will help the readers get acquainted with big data environments, whereas the second part will contain a hardcore discussion on all the concepts in analytics on big data. It will take you from data analysis and data visualization to the core concepts and advantages of machine learning, real-life usage of regression and classification using Naive Bayes, a deep discussion on the concepts of clustering,and a review of simple neural networks on big data using deepLearning4j or plain Java Spark code. This book is a must-have book for Java developers who want to start learning big data analytics and want to use it in the real world. Style and approach The approach of book is to deliver practical learning modules in manageable content. Each chapter is a self-contained unit of a concept in big data analytics. Book will step by step builds the competency in the area of big data analytics. Examples using real world case studies to give ideas of real applications and how to use the techniques mentioned. The examples and case studies will be shown using both theory and code.