[PDF] Rigid Analytic Geometry And Its Applications - eBooks Review

Rigid Analytic Geometry And Its Applications


Rigid Analytic Geometry And Its Applications
DOWNLOAD

Download Rigid Analytic Geometry And Its Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Rigid Analytic Geometry And Its Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Rigid Analytic Geometry And Its Applications


Rigid Analytic Geometry And Its Applications
DOWNLOAD
Author : Jean Fresnel
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-11-06

Rigid Analytic Geometry And Its Applications written by Jean Fresnel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-11-06 with Mathematics categories.


Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.



Rigid Analytic Geometry And Its Applications


Rigid Analytic Geometry And Its Applications
DOWNLOAD
Author : Jean Fresnel
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Rigid Analytic Geometry And Its Applications written by Jean Fresnel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.



Lectures On Formal And Rigid Geometry


Lectures On Formal And Rigid Geometry
DOWNLOAD
Author : Siegfried Bosch
language : en
Publisher: Springer
Release Date : 2014-08-22

Lectures On Formal And Rigid Geometry written by Siegfried Bosch and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-22 with Mathematics categories.


The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".



Linear Algebra And Analytic Geometry For Physical Sciences


Linear Algebra And Analytic Geometry For Physical Sciences
DOWNLOAD
Author : Giovanni Landi
language : en
Publisher: Springer
Release Date : 2018-05-12

Linear Algebra And Analytic Geometry For Physical Sciences written by Giovanni Landi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-12 with Science categories.


A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises.Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number.The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.



Non Archimedean Analysis


Non Archimedean Analysis
DOWNLOAD
Author : Siegfried Bosch
language : en
Publisher: Springer
Release Date : 1984

Non Archimedean Analysis written by Siegfried Bosch and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with Mathematics categories.




Foundations Of Rigid Geometry I


Foundations Of Rigid Geometry I
DOWNLOAD
Author : Kazuhiro Fujiwara
language : en
Publisher:
Release Date : 2018

Foundations Of Rigid Geometry I written by Kazuhiro Fujiwara and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with MATHEMATICS categories.


Rigid geometry is one of the modern branches of algebraic and arithmetic geometry. It has its historical origin in J. Tate's rigid analytic geometry, which aimed at developing an analytic geometry over non-archimedean valued fields. Nowadays, rigid geometry is a discipline in its own right and has acquired vast and rich structures, based on discoveries of its relationship with birational and formal geometries. In this research monograph, foundational aspects of rigid geometry are discussed, putting emphasis on birational and topological features of rigid spaces. Besides the rigid geometry itself, topics include the general theory of formal schemes and formal algebraic spaces, based on a theory of complete rings which are not necessarily Noetherian. Also included is a discussion on the relationship with Tate's original rigid analytic geometry, V.G. Berkovich's analytic geometry and R. Huber's adic spaces. As a model example of applications, a proof of Nagata's compactification theorem for schemes is given in the appendix. The book is encyclopedic and almost self-contained.



Berkovich Spaces And Applications


Berkovich Spaces And Applications
DOWNLOAD
Author : Antoine Ducros
language : en
Publisher: Springer
Release Date : 2014-11-21

Berkovich Spaces And Applications written by Antoine Ducros and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-21 with Mathematics categories.


We present an introduction to Berkovich’s theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to étale cohomology by A. Ducros, as well as a short note by C. Favre on the topology of some Berkovich spaces. The second part focuses on applications to geometry. A second text by A. Ducros contains a new proof of the fact that the higher direct images of a coherent sheaf under a proper map are coherent, and B. Rémy, A. Thuillier and A. Werner provide an overview of their work on the compactification of Bruhat-Tits buildings using Berkovich analytic geometry. The third and final part explores the relationship between non-archimedean geometry and dynamics. A contribution by M. Jonsson contains a thorough discussion of non-archimedean dynamical systems in dimension 1 and 2. Finally a survey by J.-P. Otal gives an account of Morgan-Shalen's theory of compactification of character varieties. This book will provide the reader with enough material on the basic concepts and constructions related to Berkovich spaces to move on to more advanced research articles on the subject. We also hope that the applications presented here will inspire the reader to discover new settings where these beautiful and intricate objects might arise.



P Adic Geometry


 P Adic Geometry
DOWNLOAD
Author : Matthew Baker
language : en
Publisher: American Mathematical Soc.
Release Date : 2008

P Adic Geometry written by Matthew Baker and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.


"In recent decades, p-adic geometry and p-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter Schoo1 2007, on which the current book is based, was a unique opportunity to introduce graduate students to this subject." "Following invaluable introductions by John Tate and Vladimir Berkovich, two pioneers of non-archimedean geometry, Brian Conrad's chapter introduces the general theory of Tate's rigid analytic spaces, Raynaud's view of them as the generic fibers of formal schemes, and Berkovich spaces. Samit Dasgupta and Jeremy Teitelbaum discuss the p-adic upper half plane as an example of a rigid analytic space and give applications to number theory (modular forms and the p-adic Langlands program). Matthew Baker offers a detailed discussion of the Berkovich projective line and p-adic potential theory on that and more general Berkovich curves. Finally, Kiran Kedlaya discusses theoretical and computational aspects of p-adic cohomology and the zeta functions of varieties. This book will be a welcome addition to the library of any graduate student and researcher who is interested in learning about the techniques of p-adic geometry."--BOOK JACKET.



Valuation Theory And Its Applications


Valuation Theory And Its Applications
DOWNLOAD
Author : Franz-Viktor Kuhlmann
language : en
Publisher: American Mathematical Soc.
Release Date : 2002-01-01

Valuation Theory And Its Applications written by Franz-Viktor Kuhlmann and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-01 with Mathematics categories.


This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). Valuation theory arose in the early part of the twentieth century in connection with number theory and has many important applications to geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer domains; the close connection to the famousresolution of the singularities problem; the study of the absolute Galois group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the application to real algebraic geometry; the study of noncommutative rings; etc. The special feature of this book isits focus on current applications of valuation theory to this broad range of topics. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.



Nonholonomic Motion Of Rigid Mechanical Systems From A Dae Viewpoint


Nonholonomic Motion Of Rigid Mechanical Systems From A Dae Viewpoint
DOWNLOAD
Author : Patrick J. Rabier
language : en
Publisher: SIAM
Release Date : 2000-01-01

Nonholonomic Motion Of Rigid Mechanical Systems From A Dae Viewpoint written by Patrick J. Rabier and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-01-01 with Mathematics categories.


Focuses on rigid body systems subjected to kinematic constraints and discusses in detail how the equations of motion are developed. The authors show that such motions can be modeled in terms of differential algebraic equations (DAEs), provided only that the correct variables are introduced.