Robotic Object Recognition Using Vision And Touch

DOWNLOAD
Download Robotic Object Recognition Using Vision And Touch PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robotic Object Recognition Using Vision And Touch book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Robotic Object Recognition Using Vision And Touch
DOWNLOAD
Author : Peter K. Allen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Robotic Object Recognition Using Vision And Touch written by Peter K. Allen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
CHAPTER 7: MATCHING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7. 2 Design of the matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7. 3 Model instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7. 3. 1 Discrimination by size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7. 3. 2 Discrimination by gross shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7. 3. 3 Feature attribute matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7. 3. 4 Surface attribute matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7. 3. 5 Classifying surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7. 3. 6 Relational consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7. 3. 7 Ordering matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 102 7. 4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7. 4. 1 Computing model-to-scene transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7. 4. 2 Matching feature frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7. 4. 3 Matching surface frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7. 4. 4 Verification sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7. 5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 CHAPTER 8: EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8. 2 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8. 3 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8. 4 Experiment 3 . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8. 5 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8. 6 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8. 7 Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8. 8 Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8. 9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 CHAPTER 9: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9. 2 Discovering 3-D structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9. 3 The multi-sensor approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9. 4 Limitations of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9. 5 Future directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 - viii - APPENDIX: BICUBIC SPLINE SURFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 2. Parametric curves and surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 3. Coons' patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3. 1 Linearly interpolated patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3. 2 Hermite interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 3. 3 Curvature continuous patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Robotic Object Recognition Using Vision And Touch
DOWNLOAD
Author : Peter Allen
language : en
Publisher: Springer
Release Date : 2011-09-30
Robotic Object Recognition Using Vision And Touch written by Peter Allen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-30 with Computers categories.
CHAPTER 7: MATCHING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7. 2 Design of the matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7. 3 Model instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7. 3. 1 Discrimination by size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7. 3. 2 Discrimination by gross shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7. 3. 3 Feature attribute matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7. 3. 4 Surface attribute matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7. 3. 5 Classifying surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7. 3. 6 Relational consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7. 3. 7 Ordering matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7. 4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7. 4. 1 Computing model-to-scene transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7. 4. 2 Matching feature frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7. 4. 3 Matching surface frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7. 4. 4 Verification sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7. 5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 CHAPTER 8: EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8. 2 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8. 3 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8. 4 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8. 5 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8. 6 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8. 7 Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8. 8 Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8. 9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 CHAPTER 9: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9. 2 Discovering 3-D structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9. 3 The multi-sensor approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9. 4 Limitations of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9. 5 Future directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 - viii - APPENDIX: BICUBIC SPLINE SURFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 2. Parametric curves and surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 3. Coons' patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3. 1 Linearly interpolated patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3. 2 Hermite interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 3. 3 Curvature continuous patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Advanced Tactile Sensing For Robotics
DOWNLOAD
Author : Howard R Nicholls
language : en
Publisher: World Scientific
Release Date : 1992-12-10
Advanced Tactile Sensing For Robotics written by Howard R Nicholls and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992-12-10 with Computers categories.
Advanced robot systems require sensory information to enable them to make decisions and to carry out actions in a versatile, autonomous way. Humans make considerable use of information derived through touch, and an emerging domain of robot sensing is tactile sensing. This book considers various aspects of tactile sensing, from hardware design through to the use of tactile data in exploratory situations using a multi-fingered robot hand.In the first part of the book, the current state of progress of tactile sensing is surveyed, and it is found that the field is still in an early stage of development. Next, some fundamental issues in planar elasticity, concerning the interaction between tactile sensors and the environment, are presented. Having established how the basic data can be derived from the sensors, the issues of what form tactile sensors should take, and how they should be used, are considered. This is particularly important given the infancy of this field. The human tactile system is examined, and then biological touch and its implications for robotics is looked at. Some experiments in dextrous manipulation using a robot hand are described, which apply some of these results. The integration of tactile sensors into a complete system is also considered, and another, novel, approach for using touch sensing in a flexible assembly machine is described.Both basic material and new research results are provided in this book, thus catering to different levels of readers. The chapters by world experts in different aspects of the field are integrated well into one volume. The editor and authors have produced a thorough and in-depth survey of all work in robot tactile sensing, making the book essential reading for all researchers in this emergent field.
Pyramidal Systems For Computer Vision
DOWNLOAD
Author : Virginio Cantoni
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Pyramidal Systems For Computer Vision written by Virginio Cantoni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
This book contains the proceedings of the NATO Advanced Research Workshop held in Maratea (Italy), May 5-9, 1986 on Pyramidal Systems for Image Processing and Computer Vision. We had 40 participants from 11 countries playing an active part in the workshop and all the leaders of groups that have produced a prototype pyramid machine or a design for such a machine were present. Within the wide field of parallel architectures for image processing a new area was recently born and is growing healthily: the area of pyramidally structured multiprocessing systems. Essentially, the processors are arranged in planes (from a base to an apex) each one of which is generally a reduced (usually by a power of two) version of the plane underneath: these processors are horizontally interconnected (within a plane) and vertically connected with "fathers" (on top planes) and "children" on the plane below. This arrangement has a number of interesting features, all of which were amply discussed in our Workshop including the cellular array and hypercube versions of pyramids. A number of projects (in different parts of the world) are reported as well as some interesting applications in computer vision, tactile systems and numerical calculations.
Kinematic Modeling Identification And Control Of Robotic Manipulators
DOWNLOAD
Author : Henry W. Stone
language : en
Publisher: Springer Science & Business Media
Release Date : 1987-09-30
Kinematic Modeling Identification And Control Of Robotic Manipulators written by Henry W. Stone and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987-09-30 with Technology & Engineering categories.
The objective of this dissertation is to advance the state-of-the-art in the kinematic modeling, identification, and control of robotic manipulators with rigid links in an effort to improve robot kinematic performance. The positioning accuracy of commercially-available industrial robotic manipulators depends upon a kinematic model which describes the robot geometry in a parametric form. Manufacturing error in the machining and assembly of manipulators lead to discrepancies between the design parameters and the physical structure. Improving the kinematic perfor mance thus requires the identification of the actual kinematic parameters of each individual robot. The identified kinematic parameters are referred to as the arm signature. Existing robot kinematic models, such as the Denavit-Hartenberg model, are not directly applicable to kinematic parameter identification. In this dissertation we introduce a new kinematic model, called the 5-Model, which is applicable to kinematic parameter identification, and use it as the foundation for our development of a general technique for identifying the kinematic parameters of any robot with rigid links.
Machine Intelligence And Knowledge Engineering For Robotic Applications
DOWNLOAD
Author : Andrew K.C. Wong
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Machine Intelligence And Knowledge Engineering For Robotic Applications written by Andrew K.C. Wong and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
This book is the outcome of the NATO Advanced Research Workshop on Machine Intelligence and Knowledge Engineering for Robotic Applications held at Maratea, Italy in May 1986. Attendance of the workshop was by invitation only. Most of the participants and speakers are recognized leaders in the field, representing industry, government and academic c0mrnunity worldwide. The focus of the workshop was to review the recent advances of machine intelligence and knowledge engineering for robotic appli cations. It covers five main areas of interest. They are grouped into five sections: 1. Robot Vision 2. Knowledge Representation and Image Understanding 3. Robot Control and Inference Systems 4. Task Planning and Expert Systems 5. Software/Hardware Systems Also included in this book are a paper from the Poster Session and a brief report of the panel discussion on the Future Direction in Knowledge-Based Robotics. Section I of this book consists of four papers. It begins with a review of the basic concepts of computer vision, with emphasis on techniques specific for robot vision systems. The next paper pre sents a comprehensive 3-D vision system for robotic application.
Parallel Architectures And Parallel Algorithms For Integrated Vision Systems
DOWNLOAD
Author : Alok N. Choudary
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Parallel Architectures And Parallel Algorithms For Integrated Vision Systems written by Alok N. Choudary and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Computer vision is one of the most complex and computationally intensive problem. Like any other computationally intensive problems, parallel pro cessing has been suggested as an approach to solving the problems in com puter vision. Computer vision employs algorithms from a wide range of areas such as image and signal processing, advanced mathematics, graph theory, databases and artificial intelligence. Hence, not only are the comput ing requirements for solving vision problems tremendous but they also demand computers that are efficient to solve problems exhibiting vastly dif ferent characteristics. With recent advances in VLSI design technology, Single Instruction Multiple Data (SIMD) massively parallel computers have been proposed and built. However, such architectures have been shown to be useful for solving a very limited subset of the problems in vision. Specifically, algorithms from low level vision that involve computations closely mimicking the architec ture and require simple control and computations are suitable for massively parallel SIMD computers. An Integrated Vision System (IVS) involves com putations from low to high level vision to be executed in a systematic fashion and repeatedly. The interaction between computations and information dependent nature of the computations suggests that architectural require ments for computer vision systems can not be satisfied by massively parallel SIMD computers.
Computer Vision Eccv 2020
DOWNLOAD
Author : Andrea Vedaldi
language : en
Publisher: Springer Nature
Release Date : 2020-11-18
Computer Vision Eccv 2020 written by Andrea Vedaldi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-18 with Computers categories.
The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Space Robotics Dynamics And Control
DOWNLOAD
Author : Yangsheng Xu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Space Robotics Dynamics And Control written by Yangsheng Xu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.
Robotic technology offers two potential benefits for future space exploration. One benefit is minimizing the risk that astronauts face. The other benefit is increasing their productivity. Realizing the benefits of robotic technology in space will require solving several problems which are unique and now becoming active research topics. One of the most important research areas is dynamics, control, motion and planning for space robots by considering the dynamic interaction between the robot and the base (space station, space shuttle, or satellite). Any inefficiency in the planning and control can considerably risk by success of the space mission. Space Robotics: Dynamics and Control presents a collection of papers concerning fundamental problems in dynamics and control of space robots, focussing on issues relevant to dynamic base/robot interaction. The authors are all pioneers in theoretical analysis and experimental systems development of space robot technology. The chapters are organized within three problem areas: dynamics problems, nonholonomic nature problems, and control problems. This collection provides a solid reference for researchers in robotics, mechanics, control, and astronautical science.
Control And Dynamic Systems V39 Advances In Robotic Systems Part 1 Of 2
DOWNLOAD
Author : C.T. Leonides
language : en
Publisher: Elsevier
Release Date : 2012-12-02
Control And Dynamic Systems V39 Advances In Robotic Systems Part 1 Of 2 written by C.T. Leonides and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-02 with Technology & Engineering categories.
Advances in Robotic Systems, Part 1 shows how the activity in robotic systems has increased significantly over the past decade. Major centers of research and development in robotic systems were established on the international scene, and these became focal points for the brilliant research efforts of many academicians and industrial professionals. The systems aspects of robotics, in general, and of robot control, in particular, are manifested through a number of technical facts. This book comprises 10 chapters, with the first focusing on applications of neural networks to robotics. The following chapters then discuss a unified approach to kinematic modeling, identification and compensation for robot calibration; nonlinear control algorithms in robotic systems; and kinematic and dynamic task space motion planning for robot control. Other chapters cover discrete kinematic modeling techniques in Cartesian space for robotic system; force distribution algorithms for multifingered grippers; frequency analysis for a discrete-time robot system; minimum cost trajectory planning for industrial robots; tactile sensing techniques in robotic systems; and sensor data fusion in robotic systems. This book will be of interest to practitioners in the fields of computer science, systems science, and mathematics.