Self Organising Neural Networks

DOWNLOAD
Download Self Organising Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Self Organising Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Self Organizing Maps
DOWNLOAD
Author : Teuvo Kohonen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Self Organizing Maps written by Teuvo Kohonen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
The book we have at hand is the fourth monograph I wrote for Springer Verlag. The previous one named "Self-Organization and Associative Mem ory" (Springer Series in Information Sciences, Volume 8) came out in 1984. Since then the self-organizing neural-network algorithms called SOM and LVQ have become very popular, as can be seen from the many works re viewed in Chap. 9. The new results obtained in the past ten years or so have warranted a new monograph. Over these years I have also answered lots of questions; they have influenced the contents of the present book. I hope it would be of some interest and help to the readers if I now first very briefly describe the various phases that led to my present SOM research, and the reasons underlying each new step. I became interested in neural networks around 1960, but could not in terrupt my graduate studies in physics. After I was appointed Professor of Electronics in 1965, it still took some years to organize teaching at the uni versity. In 1968 - 69 I was on leave at the University of Washington, and D. Gabor had just published his convolution-correlation model of autoasso ciative memory. I noticed immediately that there was something not quite right about it: the capacity was very poor and the inherent noise and crosstalk were intolerable. In 1970 I therefore sugge~ted the auto associative correlation matrix memory model, at the same time as J.A. Anderson and K. Nakano.
Self Organizing Neural Networks
DOWNLOAD
Author : Udo Seiffert
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-09-25
Self Organizing Neural Networks written by Udo Seiffert and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-09-25 with Computers categories.
The Self-Organizing Map (SOM) is one of the most frequently used architectures for unsupervised artificial neural networks. Introduced by Teuvo Kohonen in the 1980s, SOMs have been developed as a very powerful method for visualization and unsupervised classification tasks by an active and innovative community of interna tional researchers. A number of extensions and modifications have been developed during the last two decades. The reason is surely not that the original algorithm was imperfect or inad equate. It is rather the universal applicability and easy handling of the SOM. Com pared to many other network paradigms, only a few parameters need to be arranged and thus also for a beginner the network leads to useful and reliable results. Never theless there is scope for improvements and sophisticated new developments as this book impressively demonstrates. The number of published applications utilizing the SOM appears to be unending. As the title of this book indicates, the reader will benefit from some of the latest the oretical developments and will become acquainted with a number of challenging real-world applications. Our aim in producing this book has been to provide an up to-date treatment of the field of self-organizing neural networks, which will be ac cessible to researchers, practitioners and graduated students from diverse disciplines in academics and industry. We are very grateful to the father of the SOMs, Professor Teuvo Kohonen for sup porting this book and contributing the first chapter.
Soft Computing Approach To Pattern Recognition And Image Processing
DOWNLOAD
Author : Ashish Ghosh
language : en
Publisher: World Scientific
Release Date : 2002
Soft Computing Approach To Pattern Recognition And Image Processing written by Ashish Ghosh and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Computers categories.
This volume provides a collection of sixteen articles containing review and new material. In a unified way, they describe the recent development of theories and methodologies in pattern recognition, image processing and vision using fuzzy logic, artificial neural networks, genetic algorithms, rough sets and wavelets with significant real life applications.The book details the theory of granular computing and the role of a rough-neuro approach as a way of computing with words and designing intelligent recognition systems. It also demonstrates applications of the soft computing paradigm to case based reasoning, data mining and bio-informatics with a scope for future research.The contributors from around the world present a balanced mixture of current theory, algorithms and applications, making the book an extremely useful resource for students and researchers alike.
Self Organising Neural Networks
DOWNLOAD
Author : Mark Girolami
language : en
Publisher: Springer
Release Date : 1999-06-25
Self Organising Neural Networks written by Mark Girolami and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-06-25 with Computers categories.
This volume presents the theory and applications of self-organising neural network models which perform the Independent Component Analysis (ICA) transformation and Blind Source Separation (BSS). It is largely self-contained, covering the fundamental concepts of information theory, higher order statistics and information geometry. Neural models for instantaneous and temporal BSS and their adaptation algorithms are presented and studied in detail. There is also in-depth coverage of the following application areas; noise reduction, speech enhancement in noisy environments, image enhancement, feature extraction for classification, data analysis and visualisation, data mining and biomedical data analysis. Self-Organising Neural Networks will be of interest to postgraduate students and researchers in Connectionist AI, Signal Processing and Neural Networks, research and development workers, and technology development engineers and research engineers.
Self Organizing Maps
DOWNLOAD
Author : Teuvo Kohonen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Self Organizing Maps written by Teuvo Kohonen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
The second, revised edition of this book was suggested by the impressive sales of the first edition. Fortunately this enabled us to incorporate new important results that had just been obtained. The ASSOM (Adaptive-Subspace SOM) is a new architecture in which invariant-feature detectors emerge in an unsupervised learning process. Its basic principle was already introduced in the first edition, but the motiva tion and theoretical discussion in the second edition is more thorough and consequent. New material has been added to Sect. 5.9 and this section has been rewritten totally. Correspondingly, Sect. 1.4, which deals with adaptive subspace classifiers in general and constitutes the prerequisite for the ASSOM principle, has also been extended and rewritten totally. Another new SOM development is the WEBSOM, a two-layer architecture intended for the organization of very large collections of full-text documents such as those found in the Internet and World Wide Web. This architecture was published after the first edition came out. The idea and results seemed to be so important that the new Sect. 7.8 has now been added to the second edition. Another addition that contains new results is Sect. 3.15, which describes the acceleration in the computing of very large SOMs. It was also felt that Chap. 7, which deals with 80M applications, had to be extended.
An Introduction To Neural Networks
DOWNLOAD
Author : Kevin Gurney
language : en
Publisher: CRC Press
Release Date : 2018-10-08
An Introduction To Neural Networks written by Kevin Gurney and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-08 with Computers categories.
Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.
Adaptive And Natural Computing Algorithms
DOWNLOAD
Author : Andrej Dobnikar
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-03-03
Adaptive And Natural Computing Algorithms written by Andrej Dobnikar and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-03 with Computers categories.
The two-volume set LNCS 6593 and 6594 constitutes the refereed proceedings of the 10th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2010, held in Ljubljana, Slovenia, in April 2010. The 83 revised full papers presented were carefully reviewed and selected from a total of 144 submissions. The first volume includes 42 papers and a plenary lecture and is organized in topical sections on neural networks and evolutionary computation.
Self Organizing Neural Networks
DOWNLOAD
Author : Udo Seiffert
language : en
Publisher:
Release Date : 2014-09-01
Self Organizing Neural Networks written by Udo Seiffert and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-01 with categories.
Handbook Of Natural Computing
DOWNLOAD
Author : Grzegorz Rozenberg
language : en
Publisher: Springer
Release Date : 2012-10-17
Handbook Of Natural Computing written by Grzegorz Rozenberg and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-17 with Computers categories.
Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.
The Self Assembling Brain
DOWNLOAD
Author : Peter Robin Hiesinger
language : en
Publisher: Princeton University Press
Release Date : 2021-05-04
The Self Assembling Brain written by Peter Robin Hiesinger and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-04 with Computers categories.
"In this book, Peter Robin Hiesinger explores historical and contemporary attempts to understand the information needed to make biological and artificial neural networks. Developmental neurobiologists and computer scientists with an interest in artificial intelligence - driven by the promise and resources of biomedical research on the one hand, and by the promise and advances of computer technology on the other - are trying to understand the fundamental principles that guide the generation of an intelligent system. Yet, though researchers in these disciplines share a common interest, their perspectives and approaches are often quite different. The book makes the case that "the information problem" underlies both fields, driving the questions that are driving forward the frontiers, and aims to encourage cross-disciplinary communication and understanding, to help both fields make progress. The questions that challenge researchers in these fields include the following. How does genetic information unfold during the years-long process of human brain development, and can this be a short-cut to create human-level artificial intelligence? Is the biological brain just messy hardware that can be improved upon by running learning algorithms in computers? Can artificial intelligence bypass evolutionary programming of "grown" networks? These questions are tightly linked, and answering them requires an understanding of how information unfolds algorithmically to generate functional neural networks. Via a series of closely linked "discussions" (fictional dialogues between researchers in different disciplines) and pedagogical "seminars," the author explores the different challenges facing researchers working on neural networks, their different perspectives and approaches, as well as the common ground and understanding to be found amongst those sharing an interest in the development of biological brains and artificial intelligent systems"--