[PDF] Semantic Relations Between Nominals Second Edition - eBooks Review

Semantic Relations Between Nominals Second Edition


Semantic Relations Between Nominals Second Edition
DOWNLOAD

Download Semantic Relations Between Nominals Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Semantic Relations Between Nominals Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Semantic Relations Between Nominals Second Edition


Semantic Relations Between Nominals Second Edition
DOWNLOAD
Author : Vivi Nastase
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Semantic Relations Between Nominals Second Edition written by Vivi Nastase and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Opportunity and Curiosity find similar rocks on Mars. One can generally understand this statement if one knows that Opportunity and Curiosity are instances of the class of Mars rovers, and recognizes that, as signalled by the word on, rocks are located on Mars. Two mental operations contribute to understanding: recognize how entities/concepts mentioned in a text interact and recall already known facts (which often themselves consist of relations between entities/concepts). Concept interactions one identifies in the text can be added to the repository of known facts, and aid the processing of future texts. The amassed knowledge can assist many advanced language-processing tasks, including summarization, question answering and machine translation. Semantic relations are the connections we perceive between things which interact. The book explores two, now intertwined, threads in semantic relations: how they are expressed in texts and what role they play in knowledge repositories. A historical perspective takes us back more than 2000 years to their beginnings, and then to developments much closer to our time: various attempts at producing lists of semantic relations, necessary and sufficient to express the interaction between entities/concepts. A look at relations outside context, then in general texts, and then in texts in specialized domains, has gradually brought new insights, and led to essential adjustments in how the relations are seen. At the same time, datasets which encompass these phenomena have become available. They started small, then grew somewhat, then became truly large. The large resources are inevitably noisy because they are constructed automatically. The available corpora—to be analyzed, or used to gather relational evidence—have also grown, and some systems now operate at the Web scale. The learning of semantic relations has proceeded in parallel, in adherence to supervised, unsupervised or distantly supervised paradigms. Detailed analyses of annotated datasets in supervised learning have granted insights useful in developing unsupervised and distantly supervised methods. These in turn have contributed to the understanding of what relations are and how to find them, and that has led to methods scalable to Web-sized textual data. The size and redundancy of information in very large corpora, which at first seemed problematic, have been harnessed to improve the process of relation extraction/learning. The newest technology, deep learning, supplies innovative and surprising solutions to a variety of problems in relation learning. This book aims to paint a big picture and to offer interesting details.



Semantic Relations Between Nominals


Semantic Relations Between Nominals
DOWNLOAD
Author : Vivi Nastase
language : en
Publisher: Springer Nature
Release Date : 2013-04-26

Semantic Relations Between Nominals written by Vivi Nastase and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-26 with Computers categories.


People make sense of a text by identifying the semantic relations which connect the entities or concepts described by that text. A system which aspires to human-like performance must also be equipped to identify, and learn from, semantic relations in the texts it processes. Understanding even a simple sentence such as "Opportunity and Curiosity find similar rocks on Mars" requires recognizing relations (rocks are located on Mars, signalled by the word on) and drawing on already known relations (Opportunity and Curiosity are instances of the class of Mars rovers). A language-understanding system should be able to find such relations in documents and progressively build a knowledge base or even an ontology. Resources of this kind assist continuous learning and other advanced language-processing tasks such as text summarization, question answering and machine translation. The book discusses the recognition in text of semantic relations which capture interactions between base noun phrases. After a brief historical background, we introduce a range of relation inventories of varying granularity, which have been proposed by computational linguists. There is also variation in the scale at which systems operate, from snippets all the way to the whole Web, and in the techniques of recognizing relations in texts, from full supervision through weak or distant supervision to self-supervised or completely unsupervised methods. A discussion of supervised learning covers available datasets, feature sets which describe relation instances, and successful algorithms. An overview of weakly supervised and unsupervised learning zooms in on the acquisition of relations from large corpora with hardly any annotated data. We show how bootstrapping from seed examples or patterns scales up to very large text collections on the Web. We also present machine learning techniques in which data redundancy and variability lead to fast and reliable relation extraction.



Semantic Relations Between Nominals


Semantic Relations Between Nominals
DOWNLOAD
Author : Vivi Nastase
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2021-04-08

Semantic Relations Between Nominals written by Vivi Nastase and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-08 with Computers categories.


Opportunity and Curiosity find similar rocks on Mars. One can generally understand this statement if one knows that Opportunity and Curiosity are instances of the class of Mars rovers, and recognizes that, as signalled by the word on, ROCKS are located on Mars. Two mental operations contribute to understanding: recognize how entities/concepts mentioned in a text interact and recall already known facts (which often themselves consist of relations between entities/concepts). Concept interactions one identifies in the text can be added to the repository of known facts, and aid the processing of future texts. The amassed knowledge can assist many advanced language-processing tasks, including summarization, question answering and machine translation. Semantic relations are the connections we perceive between things which interact. The book explores two, now intertwined, threads in semantic relations: how they are expressed in texts and what role they play in knowledge repositories. A historical perspective takes us back more than 2000 years to their beginnings, and then to developments much closer to our time: various attempts at producing lists of semantic relations, necessary and sufficient to express the interaction between entities/concepts. A look at relations outside context, then in general texts, and then in texts in specialized domains, has gradually brought new insights, and led to essential adjustments in how the relations are seen. At the same time, datasets which encompass these phenomena have become available. They started small, then grew somewhat, then became truly large. The large resources are inevitably noisy because they are constructed automatically. The available corpora—to be analyzed, or used to gather relational evidence—have also grown, and some systems now operate at the Web scale. The learning of semantic relations has proceeded in parallel, in adherence to supervised, unsupervised or distantly supervised paradigms. Detailed analyses of annotated datasets in supervised learning have granted insights useful in developing unsupervised and distantly supervised methods. These in turn have contributed to the understanding of what relations are and how to find them, and that has led to methods scalable to Web-sized textual data. The size and redundancy of information in very large corpora, which at first seemed problematic, have been harnessed to improve the process of relation extraction/learning. The newest technology, deep learning, supplies innovative and surprising solutions to a variety of problems in relation learning. This book aims to paint a big picture and to offer interesting details.



Semantic Relations Between Nominals


Semantic Relations Between Nominals
DOWNLOAD
Author : Vivi Nastase
language : en
Publisher:
Release Date : 2021-04-08

Semantic Relations Between Nominals written by Vivi Nastase and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-08 with categories.


Opportunity and Curiosity find similar rocks on Mars. One can generally understand this statement if one knows that Opportunity and Curiosity are instances of the class of Mars rovers, and recognizes that, as signalled by the word on, ROCKS are located on Mars. Two mental operations contribute to understanding: recognize how entities/concepts mentioned in a text interact and recall already known facts (which often themselves consist of relations between entities/concepts). Concept interactions one identifies in the text can be added to the repository of known facts, and aid the processing of future texts. The amassed knowledge can assist many advanced language-processing tasks, including summarization, question answering and machine translation. Semantic relations are the connections we perceive between things which interact. The book explores two, now intertwined, threads in semantic relations: how they are expressed in texts and what role they play in knowledge repositories. A historical perspective takes us back more than 2000 years to their beginnings, and then to developments much closer to our time: various attempts at producing lists of semantic relations, necessary and sufficient to express the interaction between entities/concepts. A look at relations outside context, then in general texts, and then in texts in specialized domains, has gradually brought new insights, and led to essential adjustments in how the relations are seen. At the same time, datasets which encompass these phenomena have become available. They started small, then grew somewhat, then became truly large. The large resources are inevitably noisy because they are constructed automatically. The available corpora-to be analyzed, or used to gather relational evidence-have also grown, and some systems now operate at the Web scale. The learning of semantic relations has proceeded in parallel, in adherence to supervised, unsupervised or distantly supervised paradigms. Detailed analyses of annotated datasets in supervised learning have granted insights useful in developing unsupervised and distantly supervised methods. These in turn have contributed to the understanding of what relations are and how to find them, and that has led to methods scalable to Web-sized textual data. The size and redundancy of information in very large corpora, which at first seemed problematic, have been harnessed to improve the process of relation extraction/learning. The newest technology, deep learning, supplies innovative and surprising solutions to a variety of problems in relation learning. This book aims to paint a big picture and to offer interesting details.



Syntax Based Statistical Machine Translation


Syntax Based Statistical Machine Translation
DOWNLOAD
Author : Philip Williams
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Syntax Based Statistical Machine Translation written by Philip Williams and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


This unique book provides a comprehensive introduction to the most popular syntax-based statistical machine translation models, filling a gap in the current literature for researchers and developers in human language technologies. While phrase-based models have previously dominated the field, syntax-based approaches have proved a popular alternative, as they elegantly solve many of the shortcomings of phrase-based models. The heart of this book is a detailed introduction to decoding for syntax-based models. The book begins with an overview of synchronous-context free grammar (SCFG) and synchronous tree-substitution grammar (STSG) along with their associated statistical models. It also describes how three popular instantiations (Hiero, SAMT, and GHKM) are learned from parallel corpora. It introduces and details hypergraphs and associated general algorithms, as well as algorithms for decoding with both tree and string input. Special attention is given to efficiency, including search approximations such as beam search and cube pruning, data structures, and parsing algorithms. The book consistently highlights the strengths (and limitations) of syntax-based approaches, including their ability to generalize phrase-based translation units, their modeling of specific linguistic phenomena, and their function of structuring the search space.



Conversational Ai


Conversational Ai
DOWNLOAD
Author : Michael McTear
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Conversational Ai written by Michael McTear and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


This book provides a comprehensive introduction to Conversational AI. While the idea of interacting with a computer using voice or text goes back a long way, it is only in recent years that this idea has become a reality with the emergence of digital personal assistants, smart speakers, and chatbots. Advances in AI, particularly in deep learning, along with the availability of massive computing power and vast amounts of data, have led to a new generation of dialogue systems and conversational interfaces. Current research in Conversational AI focuses mainly on the application of machine learning and statistical data-driven approaches to the development of dialogue systems. However, it is important to be aware of previous achievements in dialogue technology and to consider to what extent they might be relevant to current research and development. Three main approaches to the development of dialogue systems are reviewed: rule-based systems that are handcrafted using best practice guidelines; statistical data-driven systems based on machine learning; and neural dialogue systems based on end-to-end learning. Evaluating the performance and usability of dialogue systems has become an important topic in its own right, and a variety of evaluation metrics and frameworks are described. Finally, a number of challenges for future research are considered, including: multimodality in dialogue systems, visual dialogue; data efficient dialogue model learning; using knowledge graphs; discourse and dialogue phenomena; hybrid approaches to dialogue systems development; dialogue with social robots and in the Internet of Things; and social and ethical issues.



Linked Lexical Knowledge Bases


Linked Lexical Knowledge Bases
DOWNLOAD
Author : Iryna Gurevych
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Linked Lexical Knowledge Bases written by Iryna Gurevych and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.


This book conveys the fundamentals of Linked Lexical Knowledge Bases (LLKB) and sheds light on their different aspects from various perspectives, focusing on their construction and use in natural language processing (NLP). It characterizes a wide range of both expert-based and collaboratively constructed lexical knowledge bases. Only basic familiarity with NLP is required and this book has been written for both students and researchers in NLP and related fields who are interested in knowledge-based approaches to language analysis and their applications. Lexical Knowledge Bases (LKBs) are indispensable in many areas of natural language processing, as they encode human knowledge of language in machine readable form, and as such, they are required as a reference when machines attempt to interpret natural language in accordance with human perception. In recent years, numerous research efforts have led to the insight that to make the best use of available knowledge, the orchestrated exploitation of different LKBs is necessary. This allows us to not only extend the range of covered words and senses, but also gives us the opportunity to obtain a richer knowledge representation when a particular meaning of a word is covered in more than one resource. Examples where such an orchestrated usage of LKBs proved beneficial include word sense disambiguation, semantic role labeling, semantic parsing, and text classification. This book presents different kinds of automatic, manual, and collaborative linkings between LKBs. A special chapter is devoted to the linking algorithms employing text-based, graph-based, and joint modeling methods. Following this, it presents a set of higher-level NLP tasks and algorithms, effectively utilizing the knowledge in LLKBs. Among them, you will find advanced methods, e.g., distant supervision, or continuous vector space models of knowledge bases (KB), that have become widely used at the time of this book's writing. Finally, multilingual applications of LLKB's, such as cross-lingual semantic relatedness and computer-aided translation are discussed, as well as tools and interfaces for exploring LLKBs, followed by conclusions and future research directions.



Domain Sensitive Temporal Tagging


Domain Sensitive Temporal Tagging
DOWNLOAD
Author : Jannik Strötgen
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Domain Sensitive Temporal Tagging written by Jannik Strötgen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


This book covers the topic of temporal tagging, the detection of temporal expressions and the normalization of their semantics to some standard format. It places a special focus on the challenges and opportunities of domain-sensitive temporal tagging. After providing background knowledge on the concept of time, the book continues with a comprehensive survey of current research on temporal tagging. The authors provide an overview of existing techniques and tools, and highlight key issues that need to be addressed. This book is a valuable resource for researchers and application developers who need to become familiar with the topic and want to know the recent trends, current tools and techniques, as well as different application domains in which temporal information is of utmost importance. Due to the prevalence of temporal expressions in diverse types of documents and the importance of temporal information in any information space, temporal tagging is an important task in natural language processing (NLP), and applications of several domains can benefit from the output of temporal taggers to provide more meaningful and useful results. In recent years, temporal tagging has been an active field in NLP and computational linguistics. Several approaches to temporal tagging have been proposed, annotation standards have been developed, gold standard data sets have been created, and research competitions have been organized. Furthermore, some temporal taggers have also been made publicly available so that temporal tagging output is not just exploited in research, but is finding its way into real world applications. In addition, this book particularly focuses on domain-specific temporal tagging of documents. This is a crucial aspect as different types of documents (e.g., news articles, narratives, and colloquial texts) result in diverse challenges for temporal taggers and should be processed in a domain-sensitive manner.



Metaphor


Metaphor
DOWNLOAD
Author : Tony Veale
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Metaphor written by Tony Veale and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.


The literary imagination may take flight on the wings of metaphor, but hard-headed scientists are just as likely as doe-eyed poets to reach for a metaphor when the descriptive need arises. Metaphor is a pervasive aspect of every genre of text and every register of speech, and is as useful for describing the inner workings of a "black hole" (itself a metaphor) as it is the affairs of the human heart. The ubiquity of metaphor in natural language thus poses a significant challenge for Natural Language Processing (NLP) systems and their builders, who cannot afford to wait until the problems of literal language have been solved before turning their attention to figurative phenomena. This book offers a comprehensive approach to the computational treatment of metaphor and its figurative brethren—including simile, analogy, and conceptual blending—that does not shy away from their important cognitive and philosophical dimensions. Veale, Shutova, and Beigman Klebanov approach metaphor from multiple computational perspectives, providing coverage of both symbolic and statistical approaches to interpretation and paraphrase generation, while also considering key contributions from philosophy on what constitutes the "meaning" of a metaphor. This book also surveys available metaphor corpora and discusses protocols for metaphor annotation. Any reader with an interest in metaphor, from beginning researchers to seasoned scholars, will find this book to be an invaluable guide to what is a fascinating linguistic phenomenon.



Tagalog Reference Grammar


Tagalog Reference Grammar
DOWNLOAD
Author : Paul Schachter
language : en
Publisher: Univ of California Press
Release Date : 2023-11-15

Tagalog Reference Grammar written by Paul Schachter and has been published by Univ of California Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-15 with Foreign Language Study categories.