[PDF] Semi Riemannian Maps And Their Applications - eBooks Review

Semi Riemannian Maps And Their Applications


Semi Riemannian Maps And Their Applications
DOWNLOAD

Download Semi Riemannian Maps And Their Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Semi Riemannian Maps And Their Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Semi Riemannian Maps And Their Applications


Semi Riemannian Maps And Their Applications
DOWNLOAD
Author : Eduardo García-Río
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29

Semi Riemannian Maps And Their Applications written by Eduardo García-Río and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.


A major flaw in semi-Riemannian geometry is a shortage of suitable types of maps between semi-Riemannian manifolds that will compare their geometric properties. Here, a class of such maps called semi-Riemannian maps is introduced. The main purpose of this book is to present results in semi-Riemannian geometry obtained by the existence of such a map between semi-Riemannian manifolds, as well as to encourage the reader to explore these maps. The first three chapters are devoted to the development of fundamental concepts and formulas in semi-Riemannian geometry which are used throughout the work. In Chapters 4 and 5 semi-Riemannian maps and such maps with respect to a semi-Riemannian foliation are studied. Chapter 6 studies the maps from a semi-Riemannian manifold to 1-dimensional semi- Euclidean space. In Chapter 7 some splitting theorems are obtained by using the existence of a semi-Riemannian map. Audience: This volume will be of interest to mathematicians and physicists whose work involves differential geometry, global analysis, or relativity and gravitation.



Riemannian Submersions Riemannian Maps In Hermitian Geometry And Their Applications


Riemannian Submersions Riemannian Maps In Hermitian Geometry And Their Applications
DOWNLOAD
Author : Bayram Sahin
language : en
Publisher: Academic Press
Release Date : 2017-01-23

Riemannian Submersions Riemannian Maps In Hermitian Geometry And Their Applications written by Bayram Sahin and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-23 with Mathematics categories.


Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications is a rich and self-contained exposition of recent developments in Riemannian submersions and maps relevant to complex geometry, focusing particularly on novel submersions, Hermitian manifolds, and K\{a}hlerian manifolds. Riemannian submersions have long been an effective tool to obtain new manifolds and compare certain manifolds within differential geometry. For complex cases, only holomorphic submersions function appropriately, as discussed at length in Falcitelli, Ianus and Pastore's classic 2004 book. In this new book, Bayram Sahin extends the scope of complex cases with wholly new submersion types, including Anti-invariant submersions, Semi-invariant submersions, slant submersions, and Pointwise slant submersions, also extending their use in Riemannian maps. The work obtains new properties of the domain and target manifolds and investigates the harmonicity and geodesicity conditions for such maps. It also relates these maps with discoveries in pseudo-harmonic maps. Results included in this volume should stimulate future research on Riemannian submersions and Riemannian maps. - Systematically reviews and references modern literature in Riemannian maps - Provides rigorous mathematical theory with applications - Presented in an accessible reading style with motivating examples that help the reader rapidly progress



Semi Riemannian Geometry With Applications To Relativity


Semi Riemannian Geometry With Applications To Relativity
DOWNLOAD
Author : Barrett O'Neill
language : en
Publisher: Academic Press
Release Date : 1983-07-29

Semi Riemannian Geometry With Applications To Relativity written by Barrett O'Neill and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983-07-29 with Mathematics categories.


This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.



Differentiable And Complex Dynamics Of Several Variables


Differentiable And Complex Dynamics Of Several Variables
DOWNLOAD
Author : Pei-Chu Hu
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

Differentiable And Complex Dynamics Of Several Variables written by Pei-Chu Hu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.


The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.



Differential Geometry And Global Analysis


Differential Geometry And Global Analysis
DOWNLOAD
Author : Bang-Yen Chen
language : en
Publisher: American Mathematical Society
Release Date : 2022-04-07

Differential Geometry And Global Analysis written by Bang-Yen Chen and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-07 with Mathematics categories.


This volume contains the proceedings of the AMS Special Session on Differential Geometry and Global Analysis, Honoring the Memory of Tadashi Nagano (1930–2017), held January 16, 2020, in Denver, Colorado. Tadashi Nagano was one of the great Japanese differential geometers, whose fundamental and seminal work still attracts much interest today. This volume is inspired by his work and his legacy and, while recalling historical results, presents recent developments in the geometry of symmetric spaces as well as generalizations of symmetric spaces; minimal surfaces and minimal submanifolds; totally geodesic submanifolds and their classification; Riemannian, affine, projective, and conformal connections; the $(M_{+}, M_{-})$ method and its applications; and maximal antipodal subsets. Additionally, the volume features recent achievements related to biharmonic and biconservative hypersurfaces in space forms, the geometry of Laplace operator on Riemannian manifolds, and Chen-Ricci inequalities for Riemannian maps, among other topics that could attract the interest of any scholar working in differential geometry and global analysis on manifolds.



Complex Geometry Of Slant Submanifolds


Complex Geometry Of Slant Submanifolds
DOWNLOAD
Author : Bang-Yen Chen
language : en
Publisher: Springer Nature
Release Date : 2022-05-11

Complex Geometry Of Slant Submanifolds written by Bang-Yen Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-11 with Mathematics categories.


This book contains an up-to-date survey and self-contained chapters on complex slant submanifolds and geometry, authored by internationally renowned researchers. The book discusses a wide range of topics, including slant surfaces, slant submersions, nearly Kaehler, locally conformal Kaehler, and quaternion Kaehler manifolds. It provides several classification results of minimal slant surfaces, quasi-minimal slant surfaces, slant surfaces with parallel mean curvature vector, pseudo-umbilical slant surfaces, and biharmonic and quasi biharmonic slant surfaces in Lorentzian complex space forms. Furthermore, this book includes new results on slant submanifolds of para-Hermitian manifolds. This book also includes recent results on slant lightlike submanifolds of indefinite Hermitian manifolds, which are of extensive use in general theory of relativity and potential applications in radiation and electromagnetic fields. Various open problems and conjectures on slant surfaces in complex space forms are also included in the book. It presents detailed information on the most recent advances in the area, making it valuable for scientists, educators and graduate students.



New Developments In Differential Geometry Budapest 1996


New Developments In Differential Geometry Budapest 1996
DOWNLOAD
Author : J. Szenthe
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

New Developments In Differential Geometry Budapest 1996 written by J. Szenthe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27-30, 1996



Riemannian Submersions And Related Topics


Riemannian Submersions And Related Topics
DOWNLOAD
Author : Maria Falcitelli
language : en
Publisher: World Scientific
Release Date : 2004

Riemannian Submersions And Related Topics written by Maria Falcitelli and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.


This book provides the first-ever systematic introduction to thetheory of Riemannian submersions, which was initiated by BarrettO''Neill and Alfred Gray less than four decades ago. The authorsfocus their attention on classification theorems when the total spaceand the fibres have nice geometric properties.



Mathematical Reviews


Mathematical Reviews
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2004

Mathematical Reviews written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.




Proceedings Of The Workshop Contemporary Geometry And Related Topics


Proceedings Of The Workshop Contemporary Geometry And Related Topics
DOWNLOAD
Author : Neda Bokan
language : en
Publisher: World Scientific
Release Date : 2004

Proceedings Of The Workshop Contemporary Geometry And Related Topics written by Neda Bokan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.


Readership: Researchers in geometry & topology, nonlinear science and dynamical systems.