[PDF] Sequential Stochastic Optimization - eBooks Review

Sequential Stochastic Optimization


Sequential Stochastic Optimization
DOWNLOAD

Download Sequential Stochastic Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sequential Stochastic Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Sequential Stochastic Optimization


Sequential Stochastic Optimization
DOWNLOAD
Author : R. Cairoli
language : en
Publisher: John Wiley & Sons
Release Date : 2011-07-26

Sequential Stochastic Optimization written by R. Cairoli and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-07-26 with Mathematics categories.


Sequential Stochastic Optimization provides mathematicians andapplied researchers with a well-developed framework in whichstochastic optimization problems can be formulated and solved.Offering much material that is either new or has never beforeappeared in book form, it lucidly presents a unified theory ofoptimal stopping and optimal sequential control of stochasticprocesses. This book has been carefully organized so that littleprior knowledge of the subject is assumed; its only prerequisitesare a standard graduate course in probability theory and somefamiliarity with discrete-parameter martingales. Major topics covered in Sequential Stochastic Optimization include: * Fundamental notions, such as essential supremum, stopping points,accessibility, martingales and supermartingales indexed by INd * Conditions which ensure the integrability of certain suprema ofpartial sums of arrays of independent random variables * The general theory of optimal stopping for processes indexed byInd * Structural properties of information flows * Sequential sampling and the theory of optimal sequential control * Multi-armed bandits, Markov chains and optimal switching betweenrandom walks



Reinforcement Learning And Stochastic Optimization


Reinforcement Learning And Stochastic Optimization
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2022-04-25

Reinforcement Learning And Stochastic Optimization written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-25 with Mathematics categories.


REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.



Sequential Stochastic Optimization In Water Resources


Sequential Stochastic Optimization In Water Resources
DOWNLOAD
Author : Thomas Earl Croley
language : en
Publisher:
Release Date : 1972

Sequential Stochastic Optimization In Water Resources written by Thomas Earl Croley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1972 with Stochastic processes categories.




Uncertainty Management In Simulation Optimization Of Complex Systems


Uncertainty Management In Simulation Optimization Of Complex Systems
DOWNLOAD
Author : Gabriella Dellino
language : en
Publisher: Springer
Release Date : 2015-06-29

Uncertainty Management In Simulation Optimization Of Complex Systems written by Gabriella Dellino and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-29 with Business & Economics categories.


​This book aims at illustrating strategies to account for uncertainty in complex systems described by computer simulations. When optimizing the performances of these systems, accounting or neglecting uncertainty may lead to completely different results; therefore, uncertainty management is a major issues in simulation-optimization. Because of its wide field of applications, simulation-optimization issues have been addressed by different communities with different methods, and from slightly different perspectives. Alternative approaches have been developed, also depending on the application context, without any well-established method clearly outperforming the others. This editorial project brings together — as chapter contributors — researchers from different (though interrelated) areas; namely, statistical methods, experimental design, stochastic programming, global optimization, metamodeling, and design and analysis of computer simulation experiments. Editors’ goal is to take advantage of such a multidisciplinary environment, to offer to the readers a much deeper understanding of the commonalities and differences of the various approaches to simulation-based optimization, especially in uncertain environments. Editors aim to offer a bibliographic reference on the topic, enabling interested readers to learn about the state-of-the-art in this research area, also accounting for potential real-world applications to improve also the state-of-the-practice. Besides researchers and scientists of the field, the primary audience for the proposed book includes PhD students, academic teachers, as well as practitioners and professionals. Each of these categories of potential readers present adequate channels for marketing actions, e.g. scientific, academic or professional societies, internet-based communities, and authors or buyers of related publications.​



Efficient Sequential Optimization In Water Resources


Efficient Sequential Optimization In Water Resources
DOWNLOAD
Author : Thomas E. Croley
language : en
Publisher:
Release Date : 1974

Efficient Sequential Optimization In Water Resources written by Thomas E. Croley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1974 with Hydrology categories.




Encyclopedia Of Optimization


Encyclopedia Of Optimization
DOWNLOAD
Author : Christodoulos A. Floudas
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-09-04

Encyclopedia Of Optimization written by Christodoulos A. Floudas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-04 with Mathematics categories.


The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".



Machine Learning Optimization And Data Science


Machine Learning Optimization And Data Science
DOWNLOAD
Author : Giuseppe Nicosia
language : en
Publisher: Springer Nature
Release Date : 2021-01-07

Machine Learning Optimization And Data Science written by Giuseppe Nicosia and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-07 with Computers categories.


This two-volume set, LNCS 12565 and 12566, constitutes the refereed proceedings of the 6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020, held in Siena, Italy, in July 2020. The total of 116 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 209 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.



Stochastic Optimization Of Linear Sequential Control Systems


Stochastic Optimization Of Linear Sequential Control Systems
DOWNLOAD
Author : Don William Hilgendorf
language : en
Publisher:
Release Date : 1964

Stochastic Optimization Of Linear Sequential Control Systems written by Don William Hilgendorf and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1964 with Automatic control categories.




Geostatistics


Geostatistics
DOWNLOAD
Author : Jean-Paul Chilès
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-25

Geostatistics written by Jean-Paul Chilès and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-25 with Mathematics categories.


A novel, practical approach to modeling spatial uncertainty. This book deals with statistical models used to describe natural variables distributed in space or in time and space. It takes a practical, unified approach to geostatistics-integrating statistical data with physical equations and geological concepts while stressing the importance of an objective description based on empirical evidence. This unique approach facilitates realistic modeling that accounts for the complexity of natural phenomena and helps solve economic and development problems-in mining, oil exploration, environmental engineering, and other real-world situations involving spatial uncertainty. Up-to-date, comprehensive, and well-written, Geostatistics: Modeling Spatial Uncertainty explains both theory and applications, covers many useful topics, and offers a wealth of new insights for nonstatisticians and seasoned professionals alike. This volume: * Reviews the most up-to-date geostatistical methods and the types of problems they address. * Emphasizes the statistical methodologies employed in spatial estimation. * Presents simulation techniques and digital models of uncertainty. * Features more than 150 figures and many concrete examples throughout the text. * Includes extensive footnoting as well as a thorough bibliography. Geostatistics: Modeling Spatial Uncertainty is the only geostatistical book to address a broad audience in both industry and academia. An invaluable resource for geostatisticians, physicists, mining engineers, and earth science professionals such as petroleum geologists, geophysicists, and hydrogeologists, it is also an excellent supplementary text for graduate-level courses in related subjects.



Reinforcement Learning For Sequential Decision And Optimal Control


Reinforcement Learning For Sequential Decision And Optimal Control
DOWNLOAD
Author : Shengbo Eben Li
language : en
Publisher: Springer Nature
Release Date : 2023-04-05

Reinforcement Learning For Sequential Decision And Optimal Control written by Shengbo Eben Li and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-05 with Mathematics categories.


Have you ever wondered how AlphaZero learns to defeat the top human Go players? Do you have any clues about how an autonomous driving system can gradually develop self-driving skills beyond normal drivers? What is the key that enables AlphaStar to make decisions in Starcraft, a notoriously difficult strategy game that has partial information and complex rules? The core mechanism underlying those recent technical breakthroughs is reinforcement learning (RL), a theory that can help an agent to develop the self-evolution ability through continuing environment interactions. In the past few years, the AI community has witnessed phenomenal success of reinforcement learning in various fields, including chess games, computer games and robotic control. RL is also considered to be a promising and powerful tool to create general artificial intelligence in the future. As an interdisciplinary field of trial-and-error learning and optimal control, RL resembles how humans reinforce their intelligence by interacting with the environment and provides a principled solution for sequential decision making and optimal control in large-scale and complex problems. Since RL contains a wide range of new concepts and theories, scholars may be plagued by a number of questions: What is the inherent mechanism of reinforcement learning? What is the internal connection between RL and optimal control? How has RL evolved in the past few decades, and what are the milestones? How do we choose and implement practical and effective RL algorithms for real-world scenarios? What are the key challenges that RL faces today, and how can we solve them? What is the current trend of RL research? You can find answers to all those questions in this book. The purpose of the book is to help researchers and practitioners take a comprehensive view of RL and understand the in-depth connection between RL and optimal control. The book includes not only systematic and thorough explanations of theoretical basics but also methodical guidance of practical algorithm implementations. The book intends to provide a comprehensive coverage of both classic theories and recent achievements, and the content is carefully and logically organized, including basic topics such as the main concepts and terminologies of RL, Markov decision process (MDP), Bellman’s optimality condition, Monte Carlo learning, temporal difference learning, stochastic dynamic programming, function approximation, policy gradient methods, approximate dynamic programming, and deep RL, as well as the latest advances in action and state constraints, safety guarantee, reference harmonization, robust RL, partially observable MDP, multiagent RL, inverse RL, offline RL, and so on.