Serverless Deep Learning With Tensorflow And Aws Lambda

DOWNLOAD
Download Serverless Deep Learning With Tensorflow And Aws Lambda PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Serverless Deep Learning With Tensorflow And Aws Lambda book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Hands On Serverless Deep Learning With Tensorflow And Aws Lambda
DOWNLOAD
Author : Rustem Feyzkhanov
language : en
Publisher: Impackt Publishing
Release Date : 2019-01-31
Hands On Serverless Deep Learning With Tensorflow And Aws Lambda written by Rustem Feyzkhanov and has been published by Impackt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with categories.
Use the serverless computing approach to save time and money Key Features Save your time by deploying deep learning models with ease using the AWS serverless infrastructure Get a solid grip on AWS services and use them with TensorFlow for efficient deep learning Includes tips, tricks and best practices on serverless deep learning that you can use in a production environment Book Description One of the main problems with deep learning models is finding the right way to deploy them within the company's IT infrastructure. Serverless architecture changes the rules of the game--instead of thinking about cluster management, scalability, and query processing, it allows us to focus specifically on training the model. This book prepares you to use your own custom-trained models with AWS Lambda to achieve a simplified serverless computing approach without spending much time and money. You will use AWS Services to deploy TensorFlow models without spending hours training and deploying them. You'll learn to deploy with serverless infrastructures, create APIs, process pipelines, and more with the tips included in this book. By the end of the book, you will have implemented your own project that demonstrates how to use AWS Lambda effectively so as to serve your TensorFlow models in the best possible way. What you will learn Gain practical experience by working hands-on with serverless infrastructures (AWS Lambda) Export and deploy deep learning models using Tensorflow Build a solid base in AWS and its various functions Create a deep learning API using AWS Lambda Look at the AWS API gateway Create deep learning processing pipelines using AWS functions Create deep learning production pipelines using AWS Lambda and AWS Step Function Who this book is for This book will benefit data scientists who want to learn how to deploy models easily and beginners who want to learn about deploying into the cloud. No prior knowledge of TensorFlow or AWS is required.
Serverless Deep Learning With Tensorflow And Aws Lambda
DOWNLOAD
Author : Rustem Feyzkhanov
language : en
Publisher:
Release Date : 2018
Serverless Deep Learning With Tensorflow And Aws Lambda written by Rustem Feyzkhanov and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
"One of the main problems with deep learning models is finding the right way to deploy them within the company's IT infrastructure. Serverless architecture changes the rules of the game ... it allows us to focus specifically on training the model. This course prepares you to use your own custom-trained models with AWS Lambda to achieve a simplified serverless computing approach without spending much time and money."--Resource description page.
Machine Learning Bookcamp
DOWNLOAD
Author : Alexey Grigorev
language : en
Publisher: Simon and Schuster
Release Date : 2021-11-23
Machine Learning Bookcamp written by Alexey Grigorev and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-23 with Computers categories.
Time to flex your machine learning muscles! Take on the carefully designed challenges of the Machine Learning Bookcamp and master essential ML techniques through practical application. Summary In Machine Learning Bookcamp you will: Collect and clean data for training models Use popular Python tools, including NumPy, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images Deploy ML models to a production-ready environment The only way to learn is to practice! In Machine Learning Bookcamp, you’ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image analysis, each new project builds on what you’ve learned in previous chapters. You’ll build a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Master key machine learning concepts as you build actual projects! Machine learning is what you need for analyzing customer behavior, predicting price trends, evaluating risk, and much more. To master ML, you need great examples, clear explanations, and lots of practice. This book delivers all three! About the book Machine Learning Bookcamp presents realistic, practical machine learning scenarios, along with crystal-clear coverage of key concepts. In it, you’ll complete engaging projects, such as creating a car price predictor using linear regression and deploying a churn prediction service. You’ll go beyond the algorithms and explore important techniques like deploying ML applications on serverless systems and serving models with Kubernetes and Kubeflow. Dig in, get your hands dirty, and have fun building your ML skills! What's inside Collect and clean data for training models Use popular Python tools, including NumPy, Scikit-Learn, and TensorFlow Deploy ML models to a production-ready environment About the reader Python programming skills assumed. No previous machine learning knowledge is required. About the author Alexey Grigorev is a principal data scientist at OLX Group. He runs DataTalks.Club, a community of people who love data. Table of Contents 1 Introduction to machine learning 2 Machine learning for regression 3 Machine learning for classification 4 Evaluation metrics for classification 5 Deploying machine learning models 6 Decision trees and ensemble learning 7 Neural networks and deep learning 8 Serverless deep learning 9 Serving models with Kubernetes and Kubeflow
Deep Learning With Tensorflow 2 And Keras
DOWNLOAD
Author : Antonio Gulli
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-27
Deep Learning With Tensorflow 2 And Keras written by Antonio Gulli and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-27 with Computers categories.
Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.
Machine Learning Engineering On Aws
DOWNLOAD
Author : Joshua Arvin Lat
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-10-27
Machine Learning Engineering On Aws written by Joshua Arvin Lat and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-27 with Computers categories.
Work seamlessly with production-ready machine learning systems and pipelines on AWS by addressing key pain points encountered in the ML life cycle Key FeaturesGain practical knowledge of managing ML workloads on AWS using Amazon SageMaker, Amazon EKS, and moreUse container and serverless services to solve a variety of ML engineering requirementsDesign, build, and secure automated MLOps pipelines and workflows on AWSBook Description There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you'll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You'll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements. What you will learnFind out how to train and deploy TensorFlow and PyTorch models on AWSUse containers and serverless services for ML engineering requirementsDiscover how to set up a serverless data warehouse and data lake on AWSBuild automated end-to-end MLOps pipelines using a variety of servicesUse AWS Glue DataBrew and SageMaker Data Wrangler for data engineeringExplore different solutions for deploying deep learning models on AWSApply cost optimization techniques to ML environments and systemsPreserve data privacy and model privacy using a variety of techniquesWho this book is for This book is for machine learning engineers, data scientists, and AWS cloud engineers interested in working on production data engineering, machine learning engineering, and MLOps requirements using a variety of AWS services such as Amazon EC2, Amazon Elastic Kubernetes Service (EKS), Amazon SageMaker, AWS Glue, Amazon Redshift, AWS Lake Formation, and AWS Lambda -- all you need is an AWS account to get started. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
97 Things Every Data Engineer Should Know
DOWNLOAD
Author : Tobias Macey
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-06-11
97 Things Every Data Engineer Should Know written by Tobias Macey and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-11 with Computers categories.
Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail
97 Things Every Cloud Engineer Should Know
DOWNLOAD
Author : Emily Freeman
language : en
Publisher: O'Reilly Media
Release Date : 2020-12-04
97 Things Every Cloud Engineer Should Know written by Emily Freeman and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-04 with Computers categories.
If you create, manage, operate, or configure systems running in the cloud, you're a cloud engineer--even if you work as a system administrator, software developer, data scientist, or site reliability engineer. With this book, professionals from around the world provide valuable insight into today's cloud engineering role. These concise articles explore the entire cloud computing experience, including fundamentals, architecture, and migration. You'll delve into security and compliance, operations and reliability, and software development. And examine networking, organizational culture, and more. You're sure to find 1, 2, or 97 things that inspire you to dig deeper and expand your own career. "Three Keys to Making the Right Multicloud Decisions," Brendan O'Leary "Serverless Bad Practices," Manases Jesus Galindo Bello "Failing a Cloud Migration," Lee Atchison "Treat Your Cloud Environment as If It Were On Premises," Iyana Garry "What Is Toil, and Why Are SREs Obsessed with It?", Zachary Nickens "Lean QA: The QA Evolving in the DevOps World," Theresa Neate "How Economies of Scale Work in the Cloud," Jon Moore "The Cloud Is Not About the Cloud," Ken Corless "Data Gravity: The Importance of Data Management in the Cloud," Geoff Hughes "Even in the Cloud, the Network Is the Foundation," David Murray "Cloud Engineering Is About Culture, Not Containers," Holly Cummins
Google Cloud Developer Certification
DOWNLOAD
Author : Cybellium
language : en
Publisher: Cybellium Ltd
Release Date : 2024-10-26
Google Cloud Developer Certification written by Cybellium and has been published by Cybellium Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-26 with Computers categories.
Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
Advanced Serverless Data Management Harnessing Google Cloud Functions For Cutting Edge Processing
DOWNLOAD
Author : Adam Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-03
Advanced Serverless Data Management Harnessing Google Cloud Functions For Cutting Edge Processing written by Adam Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.
Embark on a journey to master serverless data management with "Advanced Serverless Data Management: Harnessing Google Cloud Functions for Cutting-Edge Processing." This comprehensive guide is meticulously crafted for developers and IT professionals looking to leverage the power of serverless computing to build scalable, efficient, and cost-effective applications. Whether you're a novice eager to explore serverless technologies or an experienced developer aiming to deepen your expertise in Google Cloud Functions, this book offers a wealth of knowledge on essential topics. From setting up your environment and developing your first function to advanced integration and security practices, each chapter unfolds in a logical, structured manner, providing practical insights and examples. Learn how to process data in real-time, seamlessly integrate with a multitude of Google Cloud Platform services, optimize performance, and troubleshoot with confidence. "Advanced Serverless Data Management" is not just a book; it's your companion in navigating the evolving landscape of serverless computing, unlocking the full potential of Google Cloud Functions to innovate and elevate your projects and applications.
Fundamentals Of Big Data Analytics
DOWNLOAD
Author : Mahmoud Ahmad Al-Khasawneh
language : en
Publisher: Xoffencer International Book Publication House
Release Date : 2025-05-29
Fundamentals Of Big Data Analytics written by Mahmoud Ahmad Al-Khasawneh and has been published by Xoffencer International Book Publication House this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-29 with Computers categories.
The exponential rise of data in the modern digital era has been responsible for a transformation in the way that individuals, corporations, and governments conduct their operations. Every single click on the internet, every single transaction at a store, every single sensor in a machine, and every single post on social media all add to the massive amount of data that is known as Big Data, which is continuing to grow at an exponential rate. The tools and methods that have been used traditionally for data processing are no longer enough to effectively manage, process, or derive useful insights from the flood of information that is currently available. Big Data Analytics is a multidisciplinary area that integrates computer science, statistics, mathematics, and domain expertise in order to analyse and interpret vast and complex information. This has led to the birth of Big Data Analytics. In general, Big Data may be characterised by five fundamental aspects, which are sometimes referred to as the 5Vs. Volume refers to the volume of data that is produced each and every second. The rate at which information is generated and processed is referred to as velocity. A variety of data forms and kinds, including structured, semi-structured, and unstructured data, are referred to as variety. The trustworthiness and precision of the data is referred to as veracity. Value is defined as the possible advantages and insights that may be generated from data. The act of analysing these enormous databases in order to unearth previously concealed patterns, correlations, trends, and other important information is referred to as Big Data Analytics. With its help, businesses are able to make decisions based on data, improve the experiences of their customers, optimise their operations, and acquire a competitive advantage. It provides assistance for evidence-based approaches to the resolution of difficult issues in the realms of scientific research and public policy research. The capabilities of big data systems have been considerably improved as a result of the development of cutting-edge technologies such as distributed computing, cloud platforms, NoSQL databases, and real-time processing frameworks (such as Apache Hadoop and Apache Spark).