[PDF] Small Sample Size Solutions - eBooks Review

Small Sample Size Solutions


Small Sample Size Solutions
DOWNLOAD

Download Small Sample Size Solutions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Small Sample Size Solutions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Small Sample Size Solutions


Small Sample Size Solutions
DOWNLOAD
Author : Rens van de Schoot
language : en
Publisher: Routledge
Release Date : 2020-02-13

Small Sample Size Solutions written by Rens van de Schoot and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-13 with Psychology categories.


Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.



Small Sample Size Solutions


Small Sample Size Solutions
DOWNLOAD
Author : Rens van de Schoot
language : en
Publisher: Routledge
Release Date : 2020-02-13

Small Sample Size Solutions written by Rens van de Schoot and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-13 with Psychology categories.


Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.



Statistical Strategies For Small Sample Research


Statistical Strategies For Small Sample Research
DOWNLOAD
Author : Rick H. Hoyle
language : en
Publisher: SAGE Publications
Release Date : 1999-03-30

Statistical Strategies For Small Sample Research written by Rick H. Hoyle and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-03-30 with Social Science categories.


Newer statistical models, such as structural equation modeling and hierarchical linear modeling, require large sample sizes inappropriate for many research questions or unrealistic for many research arenas. How can researchers get the sophistication and flexibility of large sample studies without the requirement of prohibitively large samples? This book describes and illustrates statistical strategies that meet the sophistication/flexibility criteria for analyzing data from small samples of fewer than 150 cases. Contributions from some of the leading researchers in the field cover the use of multiple imputation software and how it can be used profitably with small data sets and missing data; ways to increase statistical power when sample size cannot be increased; and strategies for computing effect sizes and combining effect sizes across studies. Other contributions describe how to hypothesis test using the bootstrap; methods for pooling effect size indicators from single-case studies; frameworks for drawing inferences from cross-tabulated data; how to determine whether a correlation or covariance matrix warrants structure analysis; and what conditions indicate latent variable modeling is a viable approach to correct for unreliability in the mediator. Other topics include the use of dynamic factor analysis to model temporal processes by analyzing multivariate; time-series data from small numbers of individuals; techniques for coping with estimation problems in confirmatory factor analysis in small samples; how the state space model can be used with surprising accuracy with small data samples; and the use of partial least squares as a viable alternative to covariance-based SEM when the N is small and/or the number of variables in a model is large.



Exploratory Factor Analysis


Exploratory Factor Analysis
DOWNLOAD
Author : Leandre R. Fabrigar
language : en
Publisher: Oxford University Press
Release Date : 2012-01-12

Exploratory Factor Analysis written by Leandre R. Fabrigar and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-12 with Education categories.


This book provides a non-mathematical introduction to the theory and application of Exploratory Factor Analysis. Among the issues discussed are the use of confirmatory versus exploratory factor analysis, the use of principal components analysis versus common factor analysis, and procedures for determining the appropriate number of factors.



Small Clinical Trials


Small Clinical Trials
DOWNLOAD
Author : Institute of Medicine
language : en
Publisher: National Academies Press
Release Date : 2001-02-01

Small Clinical Trials written by Institute of Medicine and has been published by National Academies Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-02-01 with Medical categories.


Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.



Introductory Business Statistics 2e


Introductory Business Statistics 2e
DOWNLOAD
Author : Alexander Holmes
language : en
Publisher:
Release Date : 2023-12-13

Introductory Business Statistics 2e written by Alexander Holmes and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-13 with Business & Economics categories.


Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.



Sample Sizes For Clinical Trials


Sample Sizes For Clinical Trials
DOWNLOAD
Author : Steven A. Julious
language : en
Publisher: CRC Press
Release Date : 2009-08-26

Sample Sizes For Clinical Trials written by Steven A. Julious and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-08-26 with Mathematics categories.


Drawing on various real-world applications, Sample Sizes for Clinical Trials takes readers through the process of calculating sample sizes for many types of clinical trials. It provides descriptions of the calculations with a practical emphasis.Focusing on normal, binary, ordinal, and survival data, the book explores a range of trials, including su



Introductory Statistics


Introductory Statistics
DOWNLOAD
Author : Douglas S. Shafer
language : en
Publisher:
Release Date : 2022

Introductory Statistics written by Douglas S. Shafer and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Mathematical statistics categories.




Statistical Rethinking


Statistical Rethinking
DOWNLOAD
Author : Richard McElreath
language : en
Publisher: CRC Press
Release Date : 2018-01-03

Statistical Rethinking written by Richard McElreath and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-03 with Mathematics categories.


Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.



Advanced Sampling Methods


Advanced Sampling Methods
DOWNLOAD
Author : Raosaheb Latpate
language : en
Publisher: Springer Nature
Release Date : 2021-05-07

Advanced Sampling Methods written by Raosaheb Latpate and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-07 with Mathematics categories.


This book discusses all major topics on survey sampling and estimation. It covers traditional as well as advanced sampling methods related to the spatial populations. The book presents real-world applications of major sampling methods and illustrates them with the R software. As a large sample size is not cost-efficient, this book introduces a new method by using the domain knowledge of the negative correlation between the variable of interest and the auxiliary variable in order to control the size of a sample. In addition, the book focuses on adaptive cluster sampling, rank-set sampling and their applications in real life. Advance methods discussed in the book have tremendous applications in ecology, environmental science, health science, forestry, bio-sciences, and humanities. This book is targeted as a text for undergraduate and graduate students of statistics, as well as researchers in various disciplines.