Smooth Ergodic Theory And Its Applications

DOWNLOAD
Download Smooth Ergodic Theory And Its Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Smooth Ergodic Theory And Its Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Smooth Ergodic Theory And Its Applications
DOWNLOAD
Author : A. B. Katok
language : en
Publisher: American Mathematical Soc.
Release Date : 2001
Smooth Ergodic Theory And Its Applications written by A. B. Katok and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leading experts in the field. This volume presents the proceedings of that conference. Smooth ergodic theory studies the statistical properties of differentiable dynamical systems, whose origin traces back to the seminal works of Poincare and later, many great mathematicians who made contributions to the development of the theory. The main topic of this volume, smooth ergodic theory, especially the theory of nonuniformly hyperbolic systems, provides the principle paradigm for the rigorous study of complicated or chaotic behavior in deterministic systems. This paradigm asserts that if a non-linear dynamical system exhibits sufficiently pronounced exponential behavior, then global properties of the system can be deduced from studying the linearized system. One can then obtain detailed information on topological properties (such as the growth of periodic orbits, topological entropy, and dimension of invariant sets including attractors), as well as statistical properties (such as the existence of invariant measures, asymptotic behavior of typical orbits, ergodicity, mixing, decay of corre This volume serves a two-fold purpose: first, it gives a useful gateway to smooth ergodic theory for students and nonspecialists, and second, it provides a state-of-the-art report on important current aspects of the subject. The book is divided into three parts: lecture notes consisting of three long expositions with proofs aimed to serve as a comprehensive and self-contained introduction to a particular area of smooth ergodic theory; thematic sections based on mini-courses or surveys held at the conference; and original contributions presented at the meeting or closely related to the topics that were discussed there.
Introduction To Smooth Ergodic Theory
DOWNLOAD
Author : Luis Barreira
language : en
Publisher: American Mathematical Soc.
Release Date : 2013-05-30
Introduction To Smooth Ergodic Theory written by Luis Barreira and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-30 with Mathematics categories.
This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapun
Introduction To Smooth Ergodic Theory
DOWNLOAD
Author : Luís Barreira
language : en
Publisher: American Mathematical Society
Release Date : 2023-05-19
Introduction To Smooth Ergodic Theory written by Luís Barreira and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-19 with Mathematics categories.
This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.
Dynamical Systems Ergodic Theory And Applications
DOWNLOAD
Author : L.A. Bunimovich
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-04-05
Dynamical Systems Ergodic Theory And Applications written by L.A. Bunimovich and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-04-05 with Mathematics categories.
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.
Ergodic Theory
DOWNLOAD
Author : Cesar E. Silva
language : en
Publisher: Springer Nature
Release Date : 2023-07-31
Ergodic Theory written by Cesar E. Silva and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-31 with Mathematics categories.
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras
Ergodic Theory
DOWNLOAD
Author : I. P. Cornfeld
language : en
Publisher: Springer
Release Date : 2012-07-02
Ergodic Theory written by I. P. Cornfeld and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-02 with Mathematics categories.
Ergodic theory is one of the few branches of mathematics which has changed radically during the last two decades. Before this period, with a small number of exceptions, ergodic theory dealt primarily with averaging problems and general qualitative questions, while now it is a powerful amalgam of methods used for the analysis of statistical properties of dyna mical systems. For this reason, the problems of ergodic theory now interest not only the mathematician, but also the research worker in physics, biology, chemistry, etc. The outline of this book became clear to us nearly ten years ago but, for various reasons, its writing demanded a long period of time. The main principle, which we adhered to from the beginning, was to develop the approaches and methods or ergodic theory in the study of numerous concrete examples. Because of this, Part I of the book contains the description of various classes of dynamical systems, and their elementary analysis on the basis of the fundamental notions of ergodicity, mixing, and spectra of dynamical systems. Here, as in many other cases, the adjective" elementary" i~ not synonymous with "simple. " Part II is devoted to "abstract ergodic theory. " It includes the construc tion of direct and skew products of dynamical systems, the Rohlin-Halmos lemma, and the theory of special representations of dynamical systems with continuous time. A considerable part deals with entropy.
Mathematics Of Complexity And Dynamical Systems
DOWNLOAD
Author : Robert A. Meyers
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-05
Mathematics Of Complexity And Dynamical Systems written by Robert A. Meyers and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-05 with Mathematics categories.
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Ergodic Theory Of Random Transformations
DOWNLOAD
Author : Yuri Kifer
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Ergodic Theory Of Random Transformations written by Yuri Kifer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transforma tions chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. 'Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations.
Ergodic Theory And Negative Curvature
DOWNLOAD
Author : Boris Hasselblatt
language : en
Publisher: Springer
Release Date : 2017-12-15
Ergodic Theory And Negative Curvature written by Boris Hasselblatt and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-15 with Mathematics categories.
Focussing on the mathematics related to the recent proof of ergodicity of the (Weil–Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study. The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.
Piecewise Smooth Dynamical Systems
DOWNLOAD
Author : Mario Bernardo
language : en
Publisher: Springer
Release Date : 2008-01-15
Piecewise Smooth Dynamical Systems written by Mario Bernardo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-15 with Mathematics categories.
This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.