[PDF] Soft Computing For Knowledge Discovery And Data Mining - eBooks Review

Soft Computing For Knowledge Discovery And Data Mining


Soft Computing For Knowledge Discovery And Data Mining
DOWNLOAD

Download Soft Computing For Knowledge Discovery And Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Soft Computing For Knowledge Discovery And Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Soft Computing For Knowledge Discovery And Data Mining


Soft Computing For Knowledge Discovery And Data Mining
DOWNLOAD
Author : Oded Maimon
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-25

Soft Computing For Knowledge Discovery And Data Mining written by Oded Maimon and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-25 with Computers categories.


Data mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. Soft Computing for Knowledge Discovery and Data Mining introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining. This edited volume by highly regarded authors, includes several contributors of the 2005, Data Mining and Knowledge Discovery Handbook. This book was written to provide investigators in the fields of information systems, engineering, computer science, statistics and management with a profound source for the role of soft computing in data mining. Not only does this book feature illustrations of various applications including manufacturing, medical, banking, insurance and others, but also includes various real-world case studies with detailed results. Soft Computing for Knowledge Discovery and Data Mining is designed for practitioners and researchers in industry. Practitioners and researchers may be particularly interested in the description of real world data mining projects performed with soft computing. This book is also suitable as a secondary textbook or reference for advanced-level students in information systems, engineering, computer science and statistics management.



Pattern Recognition Algorithms For Data Mining


Pattern Recognition Algorithms For Data Mining
DOWNLOAD
Author : Sankar K. Pal
language : en
Publisher: CRC Press
Release Date : 2004-05-27

Pattern Recognition Algorithms For Data Mining written by Sankar K. Pal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-05-27 with Computers categories.


Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.



Data Preprocessing In Data Mining


Data Preprocessing In Data Mining
DOWNLOAD
Author : Salvador García
language : en
Publisher: Springer
Release Date : 2014-08-30

Data Preprocessing In Data Mining written by Salvador García and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-30 with Technology & Engineering categories.


Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.



Data Mining And Knowledge Discovery Handbook


Data Mining And Knowledge Discovery Handbook
DOWNLOAD
Author : Oded Maimon
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-28

Data Mining And Knowledge Discovery Handbook written by Oded Maimon and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-28 with Computers categories.


Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.



Magnetic Bubble Technology


Magnetic Bubble Technology
DOWNLOAD
Author : A. H. Eschenfelder
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Magnetic Bubble Technology written by A. H. Eschenfelder and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.


Magnetic bubbles are of interest to engineers because their properties can be used for important practical electronic devices and they are of interest to physicists because their properties are manifestations of intriguing physical principles. At the same time, the fabrication of useful configurations challenges the materials scientists and engineers. A technology of magnetic bubbles has developed to the point where commercial products are being marketed. In addition, new discovery and development are driving this technology toward substantially lower costs and presumably broader application. For all of these reasons there is a need to educate newcomers to this field in universities and in industry. The purpose of this book is to provide a text for a one-semester course that can be taught under headings of Solid State Physics, Materials Science, Computer Technology or Integrated Electronics. It is expected that the student of anyone of these disciplines will be interested in each of the chapters of this book to some degree, but may concentrate on some more than others, depending on the discipline. At the end of each chapter there is a brief summary which will serve as a reminder of the contents of the chapter but can also be read ahead of time to determine the depth of your interest in the chapter.



Knowledge Discovery And Data Mining


Knowledge Discovery And Data Mining
DOWNLOAD
Author : Honghua Tan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-04

Knowledge Discovery And Data Mining written by Honghua Tan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-04 with Technology & Engineering categories.


The volume includes a set of selected papers extended and revised from the 4th International conference on Knowledge Discovery and Data Mining, March 1-2, 2011, Macau, Chin. This Volume is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of knowledge discovery and data mining and learning to disseminate their latest research results and exchange views on the future research directions of these fields. 108 high-quality papers are included in the volume.



Feature Selection For Knowledge Discovery And Data Mining


Feature Selection For Knowledge Discovery And Data Mining
DOWNLOAD
Author : Huan Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Feature Selection For Knowledge Discovery And Data Mining written by Huan Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.



A New Paradigm Of Knowledge Engineering By Soft Computing


A New Paradigm Of Knowledge Engineering By Soft Computing
DOWNLOAD
Author : Liya Ding
language : en
Publisher: World Scientific
Release Date : 2001

A New Paradigm Of Knowledge Engineering By Soft Computing written by Liya Ding and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Computers categories.


Soft computing (SC) consists of several computing paradigms, including neural networks, fuzzy set theory, approximate reasoning, and derivative-free optimization methods such as genetic algorithms. The integration of those constituent methodologies forms the core of SC. In addition, the synergy allows SC to incorporate human knowledge effectively, deal with imprecision and uncertainty, and learn to adapt to unknown or changing environments for better performance. Together with other modern technologies, SC and its applications exert unprecedented influence on intelligent systems that mimic human intelligence in thinking, learning, reasoning, and many other aspects. Knowledge engineering (KE), which deals with knowledge acquisition, representation, validation, inferencing, explanation, and maintenance, has made significant progress recently, owing to the indefatigable efforts of researchers. Undoubtedly, the hot topics of data mining and knowledge/data discovery have injected new life into the classical AI,world. This book tells readers how KE has been influenced and extended by SC and how SC will be helpful in pushing the frontier of KE further. It is intended for researchers and graduate students to use as a reference in the study of knowledge engineering and intelligent systems. The reader is expected to have a basic knowledge of fuzzy logic, neural networks, genetic algorithms, and knowledge-based systems.



Content Addressable Memories


Content Addressable Memories
DOWNLOAD
Author : T. Kohonen
language : en
Publisher: Springer
Release Date : 2012-03

Content Addressable Memories written by T. Kohonen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03 with Artificial intelligence categories.


Designers and users of computer systems have long been aware of the fact that inclusion of some kind of content-addressable or "associative" functions in the storage and retrieval mechanisms would allow a more effective and straightforward organization of data than with the usual addressed memories, with the result that the computing power would be significantly increased. However, although the basic principles of content-addressing have been known for over twenty years, the hardware content-addressable memories (CAMs) have found their way only to special roles such as small buffer memories and con trol units. This situation now seems to be changing: Because of the develop ment of new technologies such as very-large-scale integration of semiconduc tor circuits, charge-coupled devices, magnetic-bubble memories, and certain devices based on quantum-mechanical effects, an increasing amount of active searching functions can be transferred to memory units. The prices of the more complex memory components which earlier were too high to allow the application of these principles to mass memories will be reduced to a fraction of the to tal system costs, and this will certainly have a significant impact on the new computer architectures. In order to advance the new memory principles and technologies, more in formation ought to be made accessible to a common user.



Data Mining And Computational Intelligence


Data Mining And Computational Intelligence
DOWNLOAD
Author : Abraham Kandel
language : en
Publisher: Physica
Release Date : 2013-11-11

Data Mining And Computational Intelligence written by Abraham Kandel and has been published by Physica this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Computers categories.


Many business decisions are made in the absence of complete information about the decision consequences. Credit lines are approved without knowing the future behavior of the customers; stocks are bought and sold without knowing their future prices; parts are manufactured without knowing all the factors affecting their final quality; etc. All these cases can be categorized as decision making under uncertainty. Decision makers (human or automated) can handle uncertainty in different ways. Deferring the decision due to the lack of sufficient information may not be an option, especially in real-time systems. Sometimes expert rules, based on experience and intuition, are used. Decision tree is a popular form of representing a set of mutually exclusive rules. An example of a two-branch tree is: if a credit applicant is a student, approve; otherwise, decline. Expert rules are usually based on some hidden assumptions, which are trying to predict the decision consequences. A hidden assumption of the last rule set is: a student will be a profitable customer. Since the direct predictions of the future may not be accurate, a decision maker can consider using some information from the past. The idea is to utilize the potential similarity between the patterns of the past (e.g., "most students used to be profitable") and the patterns of the future (e.g., "students will be profitable").