Solving Odes With Maple V

DOWNLOAD
Download Solving Odes With Maple V PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Solving Odes With Maple V book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Solving Odes With Maple V
DOWNLOAD
Author : David Barrow
language : en
Publisher: Brooks Cole
Release Date : 1996
Solving Odes With Maple V written by David Barrow and has been published by Brooks Cole this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Computers categories.
This resource manual/laboratory book shows students how to use the Maple computer algebra system to solve problems in ordinary differential equations. Projects, exercises, and explanations show readers how to get the most out of the Maple computer algebra
Maple V Mathematics And Its Applications
DOWNLOAD
Author : Robert J. Lopez
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Maple V Mathematics And Its Applications written by Robert J. Lopez and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The Maple Summer Workshop and Symposium, MSWS '94, reflects the growing commu nity of Maple users around the world. This volume contains the contributed papers. A careful inspection of author affiliations will reveal that they come from North America, Europe, and Australia. In fact, fifteen come from the United States, two from Canada, one from Australia, and nine come from Europe. Of European papers, two are from Ger many, two are from the Netherlands, two are from Spain, and one each is from Switzerland, Denmark, and the United Kingdom. More important than the geographical diversity is the intellectual range of the contributions. We begin to see in this collection of works papers in which Maple is used in an increasingly flexible way. For example, there is an application in computer science that uses Maple as a tool to create a new utility. There is an application in abstract algebra where Maple has been used to create new functionalities for computing in a rational function field. There are applications to geometrical optics, digital signal processing, and experimental design.
Differential Equations With Maple V
DOWNLOAD
Author : Martha L. Abell
language : en
Publisher: Academic Press
Release Date : 2000
Differential Equations With Maple V written by Martha L. Abell and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Computers categories.
Through the use of numerous examples that illustrate how to solve important applications using Maple V, Release 2, this book provides readers with a solid, hands-on introduction to ordinary and partial differental equations. Includes complete coverage of constructing and numerically computing and approximating solutions to ordinary and partial equations.
Solving Differential Equations With Maple V Release 4
DOWNLOAD
Author : David Barrow
language : en
Publisher: Brooks Cole
Release Date : 1998
Solving Differential Equations With Maple V Release 4 written by David Barrow and has been published by Brooks Cole this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Computers categories.
This comprehensive book helps students tap into the power of Maple®, thereby simplifying the computations and graphics that are often required in the practical use of mathematics. Numerous examples and exercises provide a thorough introduction to the basic Maple® commands that are needed to solve differential equations. Topics include: numerical algorithms, first order linear systems, homogeneous and nonhomogeneous equations, beats and resonance, Laplace Transforms, qualitative theory, nonlinear systems, and much more.
Solving Odes With Matlab
DOWNLOAD
Author : L. F. Shampine
language : en
Publisher: Cambridge University Press
Release Date : 2003-04-28
Solving Odes With Matlab written by L. F. Shampine and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-04-28 with Computers categories.
This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.
Advanced Problem Solving With Maple
DOWNLOAD
Author : William P. Fox
language : en
Publisher: CRC Press
Release Date : 2019-05-29
Advanced Problem Solving With Maple written by William P. Fox and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-29 with Mathematics categories.
Problem Solving is essential to solve real-world problems. Advanced Problem Solving with Maple: A First Course applies the mathematical modeling process by formulating, building, solving, analyzing, and criticizing mathematical models. It is intended for a course introducing students to mathematical topics they will revisit within their further studies. The authors present mathematical modeling and problem-solving topics using Maple as the computer algebra system for mathematical explorations, as well as obtaining plots that help readers perform analyses. The book presents cogent applications that demonstrate an effective use of Maple, provide discussions of the results obtained using Maple, and stimulate thought and analysis of additional applications. Highlights: The book’s real-world case studies prepare the student for modeling applications Bridges the study of topics and applications to various fields of mathematics, science, and engineering Features a flexible format and tiered approach offers courses for students at various levels The book can be used for students with only algebra or calculus behind them About the authors: Dr. William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. Currently, he is an adjunct professor, Department of Mathematics, the College of William and Mary. He received his Ph.D. at Clemson University and has many publications and scholarly activities including twenty books and over one hundred and fifty journal articles. William C. Bauldry, Prof. Emeritus and Adjunct Research Prof. of Mathematics at Appalachian State University, received his PhD in Approximation Theory from Ohio State. He has published many papers on pedagogy and technology, often using Maple, and has been the PI of several NSF-funded projects incorporating technology and modeling into math courses. He currently serves as Associate Director of COMAP’s Math Contest in Modeling (MCM). *Please note that the Maple package, "PSM", is now on the public area of the Maple Cloud. To access it: • From the web: 1. Go to the website https://maple.cloud 2. Click on "packages" in the left navigation pane 3. Click on "PSM" in the list of packages. 4. Click the "Download" button to capture the package. • From Maple: 1. Click on the Maple Cloud icon (far right in the Maple window toolbar). Or click on the Maple Cloud button on Maple's Start page to go to the website. 2. Click on the "packages" in the navigation pane 3. Click on "PSM" in the list of packages. The package then downloads into Maple directly.
Ordinary Differential Equations And Integral Equations
DOWNLOAD
Author : C.T.H. Baker
language : en
Publisher: Elsevier
Release Date : 2001-06-20
Ordinary Differential Equations And Integral Equations written by C.T.H. Baker and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-20 with Mathematics categories.
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods).John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?"Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices.The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour.Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems.Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions.Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions.Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods.Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory.Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages.Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields.Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems.Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems.Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems.Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions.The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect.Many phenomena incorporate noise, and the numerical solution of
Nonlinear Physics With Maple For Scientists And Engineers
DOWNLOAD
Author : Richard Enns
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-27
Nonlinear Physics With Maple For Scientists And Engineers written by Richard Enns and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-27 with Science categories.
Philosophy of the Text This text has been designed to be an introductory survey of the basic concepts and applied mathematical methods of nonlinear science. Students in engineer ing, physics, chemistry, mathematics, computing science, and biology should be able to successfully use this text. In an effort to provide the students with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of Maple V Release 4 applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The diskette which accompanies the text gives a wide variety of illustrative nonlinear examples solved with Maple. An accompanying laboratory manual of experimental activities keyed to the text allows the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated. The Level of the Text The essential prerequisites for the first eight chapters of this text would nor mally be one semester of ordinary differential equations and an intermediate course in classical mechanics.
The Maple O D E Lab Book
DOWNLOAD
Author : Darren Redfern
language : en
Publisher: Springer
Release Date : 2012-12-06
The Maple O D E Lab Book written by Darren Redfern and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The Maple ODE Lab Book is intended to provide a thorough introduc tion to using symbolic computation software to model, solve, explore, and visualize ordinary differential equations. It is best used as a supplement to existing texts (see the bibliography for some of our recommended texts). Maple was chosen as our software package because of its ease-of-use, affordability, and popularity at many universities and colleges around the world. The version being used is Maple V Release 4. If you have a previous release of Maple, some of the commands shown in this lab book will work differently (or not at all), but the basic groundwork for solving ODEs hasn't changed. Speak to your system administrator about upgrading to Release 4, or contact: Waterloo Maple Inc. 450 Phillip Street Waterloo, Ontario CANADA N2L 5J2 Phone: (519) 747-2373 FAX: (519) 747-5284 E-mail: [email protected] WWW: http://www.maplesoft.com 1 2 • Chapter 1. Introduction How This Lab Book Is Organized Each subsequent chapter of this lab book contains information and ex amples of how to apply Maple to various elements of ordinary differential equations. It is suggested that you read the chapters with your computer on and Maple V Release 4 running. You can then execute many of the com mands yourself and experiment by changing various parameters and/or initial conditions, observing the corresponding changes in the results.
Scaling Of Differential Equations
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer
Release Date : 2016-06-15
Scaling Of Differential Equations written by Hans Petter Langtangen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-15 with Mathematics categories.
The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.