[PDF] Spatial Sampling With R - eBooks Review

Spatial Sampling With R


Spatial Sampling With R
DOWNLOAD

Download Spatial Sampling With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spatial Sampling With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Spatial Sampling With R


Spatial Sampling With R
DOWNLOAD
Author : Dick J. Brus
language : en
Publisher: CRC Press
Release Date : 2022-09-26

Spatial Sampling With R written by Dick J. Brus and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-26 with Mathematics categories.


Scientific research often starts with data collection. However, many researchers pay insufficient attention to this first step in their research. The author, researcher at Wageningen University and Research, often had to conclude that the data collected by fellow researchers were suboptimal, or in some cases even unsuitable for their aim. One reason is that sampling is frequently overlooked in statistics courses. Another reason is the lack of practical textbooks on sampling. Numerous books have been published on the statistical analysis and modelling of data using R, but to date no book has been published in this series on how these data can best be collected. This book fills this gap. Spatial Sampling with R presents an overview of sampling designs for spatial sample survey and monitoring. It shows how to implement the sampling designs and how to estimate (sub)population- and space-time parameters in R. Key features Describes classical, basic sampling designs for spatial survey, as well as recently developed, advanced sampling designs and estimators Presents probability sampling designs for estimating parameters for a (sub)population, as well as non-probability sampling designs for mapping Gives comprehensive overview of model-assisted estimators Covers Bayesian approach to sampling design Illustrates sampling designs with surveys of soil organic carbon, above-ground biomass, air temperature, opium poppy Explains integration of wall-to-wall data sets (e.g. remote sensing images) and sample data Data and R code available on github Exercises added making the book suitable as a textbook for students The target group of this book are researchers and practitioners of sample surveys, as well as students in environmental, ecological, agricultural science or any other science in which knowledge about a population of interest is collected through spatial sampling. This book helps to implement proper sampling designs, tailored to their problems at hand, so that valuable data are collected that can be used to answer the research questions.



Spatial Sampling With R


Spatial Sampling With R
DOWNLOAD
Author : Dick J. Brus
language : en
Publisher: CRC Press
Release Date : 2022-09-26

Spatial Sampling With R written by Dick J. Brus and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-26 with Mathematics categories.


Scientific research often starts with data collection. However, many researchers pay insufficient attention to this first step in their research. The author, researcher at Wageningen University and Research, often had to conclude that the data collected by fellow researchers were suboptimal, or in some cases even unsuitable for their aim. One reason is that sampling is frequently overlooked in statistics courses. Another reason is the lack of practical textbooks on sampling. Numerous books have been published on the statistical analysis and modelling of data using R, but to date no book has been published in this series on how these data can best be collected. This book fills this gap. Spatial Sampling with R presents an overview of sampling designs for spatial sample survey and monitoring. It shows how to implement the sampling designs and how to estimate (sub)population- and space-time parameters in R. Key features Describes classical, basic sampling designs for spatial survey, as well as recently developed, advanced sampling designs and estimators Presents probability sampling designs for estimating parameters for a (sub)population, as well as non-probability sampling designs for mapping Gives comprehensive overview of model-assisted estimators Covers Bayesian approach to sampling design Illustrates sampling designs with surveys of soil organic carbon, above-ground biomass, air temperature, opium poppy Explains integration of wall-to-wall data sets (e.g. remote sensing images) and sample data Data and R code available on github Exercises added making the book suitable as a textbook for students The target group of this book are researchers and practitioners of sample surveys, as well as students in environmental, ecological, agricultural science or any other science in which knowledge about a population of interest is collected through spatial sampling. This book helps to implement proper sampling designs, tailored to their problems at hand, so that valuable data are collected that can be used to answer the research questions.



Geocomputation With R


Geocomputation With R
DOWNLOAD
Author : Robin Lovelace
language : en
Publisher: CRC Press
Release Date : 2019-03-22

Geocomputation With R written by Robin Lovelace and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-22 with Mathematics categories.


Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/.



Applied Spatial Data Analysis With R


Applied Spatial Data Analysis With R
DOWNLOAD
Author : Roger S. Bivand
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-08-24

Applied Spatial Data Analysis With R written by Roger S. Bivand and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-24 with Medical categories.


We began writing this book in parallel with developing software for handling and analysing spatial data withR (R Development Core Team, 2008). - though the book is now complete, software development will continue, in the R community fashion, of rich and satisfying interaction with users around the world, of rapid releases to resolve problems, and of the usual joys and frust- tions of getting things done. There is little doubt that without pressure from users, the development ofR would not have reached its present scale, and the same applies to analysing spatial data analysis withR. It would, however, not be su?cient to describe the development of the R project mainly in terms of narrowly de?ned utility. In addition to being a communityprojectconcernedwiththedevelopmentofworld-classdataana- sis software implementations, it promotes speci?c choices with regard to how data analysis is carried out.R is open source not only because open source software development, including the dynamics of broad and inclusive user and developer communities, is arguably an attractive and successful development model.



Resampling Methods For Dependent Data


Resampling Methods For Dependent Data
DOWNLOAD
Author : S. N. Lahiri
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-08-07

Resampling Methods For Dependent Data written by S. N. Lahiri and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-08-07 with Mathematics categories.


By giving a detailed account of bootstrap methods and their properties for dependent data, this book provides illustrative numerical examples throughout. The book fills a gap in the literature covering research on re-sampling methods for dependent data that has witnessed vigorous growth over the last two decades but remains scattered in various statistics and econometrics journals. It can be used as a graduate level text and also as a research monograph for statisticians and econometricians.



Spatial Analysis With R


Spatial Analysis With R
DOWNLOAD
Author : Tonny J. Oyana
language : en
Publisher: CRC Press
Release Date : 2023-09-25

Spatial Analysis With R written by Tonny J. Oyana and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-25 with categories.


This second edition provides a balance between concepts and practicums of spatial statistics with a comprehensive coverage of the most important approaches to understand spatial data, analyze spatial relationships and patterns, and predict spatial processes. It includes the implementation of new tools for spatial analysis using R.



Applied Spatial Data Analysis With R


Applied Spatial Data Analysis With R
DOWNLOAD
Author : Roger S. Bivand
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-21

Applied Spatial Data Analysis With R written by Roger S. Bivand and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-21 with Medical categories.


Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.



Geocomputation With R


Geocomputation With R
DOWNLOAD
Author : Robin Lovelace
language : en
Publisher: CRC Press
Release Date : 2025-05-23

Geocomputation With R written by Robin Lovelace and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-23 with Mathematics categories.


Geocomputation with R is for people who want to analyze, visualize, and model geographic data with open source software. The book provides a foundation for learning how to solve a wide range of geographic data analysis problems in a reproducible, and therefore scientifically sound and scalable way. The second edition features numerous updates, including the adoption of the high-performance terra package for all raster data processing, detailed coverage of the spherical geometry engine s2, updated information on coordinate reference systems and new content on openEO, STAC, COG, and gdalcubes. The data visualization chapter has been revamped around version 4 of the tmap package, providing a fresh perspective on creating publication-quality maps from the command line. The importance of the book is also highlighted in a new foreword by Edzer Pebesma. The book equips you with the knowledge and skills necessary to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. The book is especially well-suited to: Data scientists and engineers interested in upskilling to handle spatial data. People with existing geographic data skills interested in developing powerful geosolutions via code. Anyone who needs to work with spatial data in a reproducible and scalable way. The book is divided into three parts: Foundations, Extensions, and Applications, covering progressively more advanced topics. The exercises at the end of each chapter provide the necessary skills to address various geospatial problems, with solutions and supplementary materials available at r.geocompx.org/solutions/.



Copula Additive Distributional Regression Using R


Copula Additive Distributional Regression Using R
DOWNLOAD
Author : Giampiero Marra
language : en
Publisher: CRC Press
Release Date : 2025-06-24

Copula Additive Distributional Regression Using R written by Giampiero Marra and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-24 with Mathematics categories.


Copula additive distributional regression enables the joint modeling of multiple outcomes, an essential aspect of many real-world research problems. This book provides an accessible overview of this modeling approach, with a particular focus on its implementation in the GJRM R package, developed by the authors. The emphasis is on bivariate responses with empirical illustrations drawn from diverse fields such as health and medicine, epidemiology, economics and social sciences. Key Features: Provides a comprehensive overview of joint regression modeling for multiple outcomes, with a focus on bivariate responses Offers a practical approach with real-world examples from various fields Demonstrates the implementation of all the discussed models using the GJRM package in R Includes supplementary resources such as data accessible through the GJRM.data package in R and additional code available on the authors' webpages This book is designed for graduate students, researchers, practitioners and analysts who are interested in using copula additive distributional regression for the joint modeling of bivariate outcomes. The methodology is accessible to readers with a basic understanding of core statistics and probability, regression, copula modeling and R.



Deep Learning And Scientific Computing With R Torch


Deep Learning And Scientific Computing With R Torch
DOWNLOAD
Author : Sigrid Keydana
language : en
Publisher: CRC Press
Release Date : 2023-04-05

Deep Learning And Scientific Computing With R Torch written by Sigrid Keydana and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-05 with Business & Economics categories.


torch is an R port of PyTorch, one of the two most-employed deep learning frameworks in industry and research. It is also an excellent tool to use in scientific computations. It is written entirely in R and C/C++. Though still "young" as a project, R torch already has a vibrant community of users and developers. Experience shows that torch users come from a broad range of different backgrounds. This book aims to be useful to (almost) everyone. Globally speaking, its purposes are threefold: Provide a thorough introduction to torch basics – both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torch Again with a focus on conceptual explanation, show how to use torch in deep-learning applications, ranging from image recognition over time series prediction to audio classification Provide a concepts-first, reader-friendly introduction to selected scientific-computation topics (namely, matrix computations, the Discrete Fourier Transform, and wavelets), all accompanied by torch code you can play with. Deep Learning and Scientific Computing with R torch is written with first-hand technical expertise and in an engaging, fun-to-read way.