Spatial Statistics And Geostatistics

DOWNLOAD
Download Spatial Statistics And Geostatistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spatial Statistics And Geostatistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Spatial Statistics And Geostatistics
DOWNLOAD
Author : Yongwan Chun
language : en
Publisher: SAGE
Release Date : 2013-01-30
Spatial Statistics And Geostatistics written by Yongwan Chun and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-30 with Science categories.
Its focus is on spatial statistics as a distinct form of statistical analysis and it includes computer components for ArcGIS, R, SAS, and WinBUGS. The teaching and learning objective of the text is to illustrate the use of basic spatial statistics, geostatistics and the spatial filtering techniques used in all the relevant programs and software.
Spatial And Spatio Temporal Geostatistical Modeling And Kriging
DOWNLOAD
Author : José-María Montero
language : en
Publisher: John Wiley & Sons
Release Date : 2015-08-18
Spatial And Spatio Temporal Geostatistical Modeling And Kriging written by José-María Montero and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-18 with Mathematics categories.
Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R. This book includes: Methods for selecting valid covariance functions from the empirical counterparts that overcome the existing limitations of the traditional methods. The most innovative developments in the different steps of the kriging process. An up-to-date account of strategies for dealing with data evolving in space and time. An accompanying website featuring R code and examples
Multivariate Geostatistics
DOWNLOAD
Author : Hans Wackernagel
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Multivariate Geostatistics written by Hans Wackernagel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Science categories.
This fully revised third edition introduces geostatistics by emphasising the multivariate aspects for scientists, engineers and statisticians. Geostatistics offers a variety of models, methods and techniques for the analysis, estimation and display of multivariate data distributed in space or time. The text contains a brief review of statistical concepts, a detailed introduction to linear geostatistics, and an account of 3 basic methods of multivariate analysis. Applications from different areas of science, as well as exercises with solutions, are provided to help convey the general ideas. The introductory chapter has been divided into two separate sections for clarity. The final section deals with non-stationary geostatistics.
Spatial Statistics And Modeling
DOWNLOAD
Author : Carlo Gaetan
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-11-10
Spatial Statistics And Modeling written by Carlo Gaetan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-10 with Mathematics categories.
Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic properties are described, including estimation in geostatistics, autocorrelation and second-order statistics, maximum likelihood methods, approximate inference using the pseudo-likelihood or Monte-Carlo simulations, statistics for point processes and Bayesian hierarchical models. A chapter is devoted to Markov Chain Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings algorithms and exact simulation). A large number of real examples are studied with R, and each chapter ends with a set of theoretical and applied exercises. While a foundation in probability and mathematical statistics is assumed, three appendices introduce some necessary background. The book is accessible to senior undergraduate students with a solid math background and Ph.D. students in statistics. Furthermore, experienced statisticians and researchers in the above-mentioned fields will find the book valuable as a mathematically sound reference. This book is the English translation of Modélisation et Statistique Spatiales published by Springer in the series Mathématiques & Applications, a series established by Société de Mathématiques Appliquées et Industrielles (SMAI).
Geostatistical Functional Data Analysis
DOWNLOAD
Author : Jorge Mateu
language : en
Publisher: John Wiley & Sons
Release Date : 2021-12-13
Geostatistical Functional Data Analysis written by Jorge Mateu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-13 with Social Science categories.
Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
Theory Of Spatial Statistics
DOWNLOAD
Author : M.N.M. van Lieshout
language : en
Publisher: CRC Press
Release Date : 2019-03-19
Theory Of Spatial Statistics written by M.N.M. van Lieshout and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-19 with Mathematics categories.
Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.
Applied Spatial Data Analysis With R
DOWNLOAD
Author : Roger S. Bivand
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-08-24
Applied Spatial Data Analysis With R written by Roger S. Bivand and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-24 with Medical categories.
We began writing this book in parallel with developing software for handling and analysing spatial data withR (R Development Core Team, 2008). - though the book is now complete, software development will continue, in the R community fashion, of rich and satisfying interaction with users around the world, of rapid releases to resolve problems, and of the usual joys and frust- tions of getting things done. There is little doubt that without pressure from users, the development ofR would not have reached its present scale, and the same applies to analysing spatial data analysis withR. It would, however, not be su?cient to describe the development of the R project mainly in terms of narrowly de?ned utility. In addition to being a communityprojectconcernedwiththedevelopmentofworld-classdataana- sis software implementations, it promotes speci?c choices with regard to how data analysis is carried out.R is open source not only because open source software development, including the dynamics of broad and inclusive user and developer communities, is arguably an attractive and successful development model.
Practical Geostatistics
DOWNLOAD
Author : Simon Houlding
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-06-08
Practical Geostatistics written by Simon Houlding and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-06-08 with Mathematics categories.
Presents a set of linked HTML documents on the application of geostatistical theory, designed to be viewed and navigated with an Internet browser.
Model Based Geostatistics For Global Public Health
DOWNLOAD
Author : Peter J. Diggle
language : en
Publisher: CRC Press
Release Date : 2019-03-04
Model Based Geostatistics For Global Public Health written by Peter J. Diggle and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-04 with Mathematics categories.
Model-based Geostatistics for Global Public Health: Methods and Applications provides an introductory account of model-based geostatistics, its implementation in open-source software and its application in public health research. In the public health problems that are the focus of this book, the authors describe and explain the pattern of spatial variation in a health outcome or exposure measurement of interest. Model-based geostatistics uses explicit probability models and established principles of statistical inference to address questions of this kind. Features: Presents state-of-the-art methods in model-based geostatistics. Discusses the application these methods some of the most challenging global public health problems including disease mapping, exposure mapping and environmental epidemiology. Describes exploratory methods for analysing geostatistical data, including: diagnostic checking of residuals standard linear and generalized linear models; variogram analysis; Gaussian process models and geostatistical design issues. Includes a range of more complex geostatistical problems where research is ongoing. All of the results in the book are reproducible using publicly available R code and data-sets, as well as a dedicated R package. This book has been written to be accessible not only to statisticians but also to students and researchers in the public health sciences. The Authors Peter Diggle is Distinguished University Professor of Statistics in the Faculty of Health and Medicine, Lancaster University. He also holds honorary positions at the Johns Hopkins University School of Public Health, Columbia University International Research Institute for Climate and Society, and Yale University School of Public Health. His research involves the development of statistical methods for analyzing spatial and longitudinal data and their applications in the biomedical and health sciences. Dr Emanuele Giorgi is a Lecturer in Biostatistics and member of the CHICAS research group at Lancaster University, where he formerly obtained a PhD in Statistics and Epidemiology in 2015. His research interests involve the development of novel geostatistical methods for disease mapping, with a special focus on malaria and other tropical diseases. In 2018, Dr Giorgi was awarded the Royal Statistical Society Research Prize "for outstanding published contribution at the interface of statistics and epidemiology." He is also the lead developer of PrevMap, an R package where all the methodology found in this book has been implemented.
Geostatistics For Compositional Data With R
DOWNLOAD
Author : Raimon Tolosana-Delgado
language : en
Publisher: Springer Nature
Release Date : 2021-11-19
Geostatistics For Compositional Data With R written by Raimon Tolosana-Delgado and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-19 with Mathematics categories.
This book provides a guided approach to the geostatistical modelling of compositional spatial data. These data are data in proportions, percentages or concentrations distributed in space which exhibit spatial correlation. The book can be divided into four blocks. The first block sets the framework and provides some background on compositional data analysis. Block two introduces compositional exploratory tools for both non-spatial and spatial aspects. Block three covers all necessary facets of multivariate spatial prediction for compositional data: variogram modelling, cokriging and validation. Finally, block four details strategies for simulation of compositional data, including transformations to multivariate normality, Gaussian cosimulation, multipoint simulation of compositional data, and common postprocessing techniques, valid for both Gaussian and multipoint methods. All methods are illustrated via applications to two types of data sets: one a large-scale geochemical survey, comprised of a full suite of geochemical variables, and the other from a mining context, where only the elements of greatest importance are considered. R codes are included for all aspects of the methodology, encapsulated in the R package "gmGeostats", available in CRAN.