Spatial Statistics For Data Science

DOWNLOAD
Download Spatial Statistics For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spatial Statistics For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Spatial Statistics For Data Science
DOWNLOAD
Author : Paula Moraga
language : en
Publisher: CRC Press
Release Date : 2023-12-08
Spatial Statistics For Data Science written by Paula Moraga and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-08 with Mathematics categories.
Spatial data is crucial to improve decision-making in a wide range of fields including environment, health, ecology, urban planning, economy, and society. Spatial Statistics for Data Science: Theory and Practice with R describes statistical methods, modeling approaches, and visualization techniques to analyze spatial data using R. The book provides a comprehensive overview of the varying types of spatial data, and detailed explanations of the theoretical concepts of spatial statistics, alongside fully reproducible examples which demonstrate how to simulate, describe, and analyze spatial data in various applications. Combining theory and practice, the book includes real-world data science examples such as disease risk mapping, air pollution prediction, species distribution modeling, crime mapping, and real state analyses. The book utilizes publicly available data and offers clear explanations of the R code for importing, manipulating, analyzing, and visualizing data, as well as the interpretation of the results. This ensures contents are easily accessible and fully reproducible for students, researchers, and practitioners. Key Features: Describes R packages for retrieval, manipulation, and visualization of spatial data. Offers a comprehensive overview of spatial statistical methods including spatial autocorrelation, clustering, spatial interpolation, model-based geostatistics, and spatial point processes. Provides detailed explanations on how to fit and interpret Bayesian spatial models using the integrated nested Laplace approximation (INLA) and stochastic partial differential equation (SPDE) approaches.
Applied Spatial Data Analysis With R
DOWNLOAD
Author : Roger S. Bivand
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-21
Applied Spatial Data Analysis With R written by Roger S. Bivand and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-21 with Medical categories.
Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.
Handbook Of Spatial Statistics
DOWNLOAD
Author : Alan E. Gelfand
language : en
Publisher: CRC Press
Release Date : 2010-03-19
Handbook Of Spatial Statistics written by Alan E. Gelfand and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-19 with Mathematics categories.
Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters.The handbook begins with a historical intro
Spatial Data Analysis In The Social And Environmental Sciences
DOWNLOAD
Author : Robert P. Haining
language : en
Publisher: Cambridge University Press
Release Date : 1993-08-26
Spatial Data Analysis In The Social And Environmental Sciences written by Robert P. Haining and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-08-26 with Mathematics categories.
A spatial data set is a data set in which each observation is referenced to a site or area. Within both the social and environmental sciences, much of the data collected is within a spatial context and requires statistical analysis for interpretation. The purpose of this book, therefore, is to describe to students and research workers in the social and environmental sciences the current methods available for the analyses of spatial data. Methods described include data description, map interpolation, exploratory and explanatory analyses. The book also examines how spatial referencing raises a distinctive set of issues for the data analyst and recognizes the need to test underlying statistical assumptions. Further, methods for detecting problems, assessing their seriousness and taking appropriate action are discussed.
Spatial Data Analysis
DOWNLOAD
Author : Robert P. Haining
language : en
Publisher: Cambridge University Press
Release Date : 2003-04-17
Spatial Data Analysis written by Robert P. Haining and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-04-17 with Business & Economics categories.
Spatial Data Analysis: Theory and Practice, first published in 2003, provides a broad ranging treatment of the field of spatial data analysis. It begins with an overview of spatial data analysis and the importance of location (place, context and space) in scientific and policy related research. Covering fundamental problems concerning how attributes in geographical space are represented to the latest methods of exploratory spatial data analysis and spatial modeling, it is designed to take the reader through the key areas that underpin the analysis of spatial data, providing a platform from which to view and critically appreciate many of the key areas of the field. Parts of the text are accessible to undergraduate and master's level students, but it also contains sufficient challenging material that it will be of interest to geographers, social and economic scientists, environmental scientists and statisticians, whose research takes them into the area of spatial analysis.
Geographical Data Science And Spatial Data Analysis
DOWNLOAD
Author : Lex Comber
language : en
Publisher: SAGE
Release Date : 2020-12-02
Geographical Data Science And Spatial Data Analysis written by Lex Comber and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-02 with Science categories.
We are in an age of big data where all of our everyday interactions and transactions generate data. Much of this data is spatial – it is collected some-where – and identifying analytical insight from trends and patterns in these increasing rich digital footprints presents a number of challenges. Whilst other books describe different flavours of Data Analytics in R and other programming languages, there are none that consider Spatial Data (i.e. the location attached to data), or that consider issues of inference, linking Big Data, Geography, GIS, Mapping and Spatial Analytics. This is a ‘learning by doing’ textbook, building on the previous book by the same authors, An Introduction to R for Spatial Analysis and Mapping. It details the theoretical issues in analyses of Big Spatial Data and developing practical skills in the reader for addressing these with confidence.
Spatial Statistics For Data Science
DOWNLOAD
Author : Paula Moraga
language : en
Publisher: CRC Press
Release Date : 2023-12-08
Spatial Statistics For Data Science written by Paula Moraga and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-08 with Mathematics categories.
Spatial data is crucial to improve decision-making in a wide range of fields including environment, health, ecology, urban planning, economy, and society. Spatial Statistics for Data Science: Theory and Practice with R describes statistical methods, modeling approaches, and visualization techniques to analyze spatial data using R. The book provides a comprehensive overview of the varying types of spatial data, and detailed explanations of the theoretical concepts of spatial statistics, alongside fully reproducible examples which demonstrate how to simulate, describe, and analyze spatial data in various applications. Combining theory and practice, the book includes real-world data science examples such as disease risk mapping, air pollution prediction, species distribution modeling, crime mapping, and real state analyses. The book utilizes publicly available data and offers clear explanations of the R code for importing, manipulating, analyzing, and visualizing data, as well as the interpretation of the results. This ensures contents are easily accessible and fully reproducible for students, researchers, and practitioners. Key Features: Describes R packages for retrieval, manipulation, and visualization of spatial data Offers a comprehensive overview of spatial statistical methods including spatial autocorrelation, clustering, spatial interpolation, model-based geostatistics, and spatial point processes Provides detailed explanations on how to fit and interpret Bayesian spatial models using the integrated nested Laplace approximation (INLA) and stochastic partial differential equation (SPDE) approaches
Spatial Statistics And Modeling
DOWNLOAD
Author : Carlo Gaetan
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-11-10
Spatial Statistics And Modeling written by Carlo Gaetan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-10 with Mathematics categories.
Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic properties are described, including estimation in geostatistics, autocorrelation and second-order statistics, maximum likelihood methods, approximate inference using the pseudo-likelihood or Monte-Carlo simulations, statistics for point processes and Bayesian hierarchical models. A chapter is devoted to Markov Chain Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings algorithms and exact simulation). A large number of real examples are studied with R, and each chapter ends with a set of theoretical and applied exercises. While a foundation in probability and mathematical statistics is assumed, three appendices introduce some necessary background. The book is accessible to senior undergraduate students with a solid math background and Ph.D. students in statistics. Furthermore, experienced statisticians and researchers in the above-mentioned fields will find the book valuable as a mathematically sound reference. This book is the English translation of Modélisation et Statistique Spatiales published by Springer in the series Mathématiques & Applications, a series established by Société de Mathématiques Appliquées et Industrielles (SMAI).
Applied Spatial Statistics For Public Health Data
DOWNLOAD
Author : Lance A. Waller
language : en
Publisher: John Wiley & Sons
Release Date : 2004-07-29
Applied Spatial Statistics For Public Health Data written by Lance A. Waller and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-07-29 with Mathematics categories.
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
Theory Of Spatial Statistics
DOWNLOAD
Author : M.N.M. van Lieshout
language : en
Publisher: CRC Press
Release Date : 2019-03-19
Theory Of Spatial Statistics written by M.N.M. van Lieshout and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-19 with Mathematics categories.
Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.