[PDF] Stability Of Nonautonomous Differential Equations - eBooks Review

Stability Of Nonautonomous Differential Equations


Stability Of Nonautonomous Differential Equations
DOWNLOAD

Download Stability Of Nonautonomous Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stability Of Nonautonomous Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Stability Of Nonautonomous Differential Equations


Stability Of Nonautonomous Differential Equations
DOWNLOAD
Author : Luis Barreira
language : en
Publisher: Springer
Release Date : 2007-09-26

Stability Of Nonautonomous Differential Equations written by Luis Barreira and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-26 with Mathematics categories.


This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.



Stability And Bifurcation Theory For Non Autonomous Differential Equations


Stability And Bifurcation Theory For Non Autonomous Differential Equations
DOWNLOAD
Author : Anna Capietto
language : en
Publisher: Springer
Release Date : 2012-12-14

Stability And Bifurcation Theory For Non Autonomous Differential Equations written by Anna Capietto and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-14 with Mathematics categories.


This volume contains the notes from five lecture courses devoted to nonautonomous differential systems, in which appropriate topological and dynamical techniques were described and applied to a variety of problems. The courses took place during the C.I.M.E. Session "Stability and Bifurcation Problems for Non-Autonomous Differential Equations," held in Cetraro, Italy, June 19-25 2011. Anna Capietto and Jean Mawhin lectured on nonlinear boundary value problems; they applied the Maslov index and degree-theoretic methods in this context. Rafael Ortega discussed the theory of twist maps with nonperiodic phase and presented applications. Peter Kloeden and Sylvia Novo showed how dynamical methods can be used to study the stability/bifurcation properties of bounded solutions and of attracting sets for nonautonomous differential and functional-differential equations. The volume will be of interest to all researchers working in these and related fields.



Dichotomies And Stability In Nonautonomous Linear Systems


Dichotomies And Stability In Nonautonomous Linear Systems
DOWNLOAD
Author : Yu. A. Mitropolsky
language : en
Publisher: CRC Press
Release Date : 2002-10-10

Dichotomies And Stability In Nonautonomous Linear Systems written by Yu. A. Mitropolsky and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-10-10 with Mathematics categories.


Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov func



Geometric Theory Of Discrete Nonautonomous Dynamical Systems


Geometric Theory Of Discrete Nonautonomous Dynamical Systems
DOWNLOAD
Author : Christian Pötzsche
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-17

Geometric Theory Of Discrete Nonautonomous Dynamical Systems written by Christian Pötzsche and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-17 with Mathematics categories.


The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).



Ordinary Differential Equations And Stability Theory


Ordinary Differential Equations And Stability Theory
DOWNLOAD
Author : David A. Sanchez
language : en
Publisher: Courier Dover Publications
Release Date : 2019-09-18

Ordinary Differential Equations And Stability Theory written by David A. Sanchez and has been published by Courier Dover Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-18 with Mathematics categories.


This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.



Bifurcation In Autonomous And Nonautonomous Differential Equations With Discontinuities


Bifurcation In Autonomous And Nonautonomous Differential Equations With Discontinuities
DOWNLOAD
Author : Marat Akhmet
language : en
Publisher: Springer
Release Date : 2017-01-23

Bifurcation In Autonomous And Nonautonomous Differential Equations With Discontinuities written by Marat Akhmet and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-23 with Mathematics categories.


This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types – those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.



An Introduction To Nonautonomous Dynamical Systems And Their Attractors


An Introduction To Nonautonomous Dynamical Systems And Their Attractors
DOWNLOAD
Author : Peter Kloeden
language : en
Publisher: World Scientific
Release Date : 2020-11-25

An Introduction To Nonautonomous Dynamical Systems And Their Attractors written by Peter Kloeden and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Mathematics categories.


The nature of time in a nonautonomous dynamical system is very different from that in autonomous systems, which depend only on the time that has elapsed since starting rather than on the actual time itself. Consequently, limiting objects may not exist in actual time as in autonomous systems. New concepts of attractors in nonautonomous dynamical system are thus required.In addition, the definition of a dynamical system itself needs to be generalised to the nonautonomous context. Here two possibilities are considered: two-parameter semigroups or processes and the skew product flows. Their attractors are defined in terms of families of sets that are mapped onto each other under the dynamics rather than a single set as in autonomous systems. Two types of attraction are now possible: pullback attraction, which depends on the behaviour from the system in the distant past, and forward attraction, which depends on the behaviour of the system in the distant future. These are generally independent of each other.The component subsets of pullback and forward attractors exist in actual time. The asymptotic behaviour in the future limit is characterised by omega-limit sets, in terms of which form what are called forward attracting sets. They are generally not invariant in the conventional sense, but are asymptotically invariant in general and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant.Much of this book is based on lectures given by the authors in Frankfurt and Wuhan. It was written mainly when the first author held a 'Thousand Expert' Professorship at the Huazhong University of Science and Technology in Wuhan.



Stability Theory By Liapunov S Direct Method


Stability Theory By Liapunov S Direct Method
DOWNLOAD
Author : Nicolas Rouche
language : en
Publisher:
Release Date : 1977

Stability Theory By Liapunov S Direct Method written by Nicolas Rouche and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1977 with Differential equations categories.




Lyapunov Stability Of Non Autonomous Dynamical Systems


Lyapunov Stability Of Non Autonomous Dynamical Systems
DOWNLOAD
Author : David N. Cheban
language : en
Publisher: Nova Science Publishers
Release Date : 2013

Lyapunov Stability Of Non Autonomous Dynamical Systems written by David N. Cheban and has been published by Nova Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Lyapunov stability categories.


The foundation of the modern theory of stability was created in the works of A Poincare and A M Lyapunov. The theory of the stability of motion has gained increasing significance in the last decade as is apparent from the large number of publications on the subject. A considerable part of these works are concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering, which first gave the decisive impetus for the expansion and modern development of stability theory. This book contains a systematic exposition of the elements of the asymptotic stability theory of general non-autonomous dynamical systems in metric spaces with an emphasis on the application for different classes of non-autonomous evolution equations (Ordinary Differential Equations (ODEs), Difference Equations (DEs), Functional-Differential Equations (FDEs), Semi-Linear Parabolic Equations etc). The basic results of this book are contained in the courses of lectures which the author has given during many years for the students of the State University of Moldova.This book is intended for mathematicians (scientists and university professors) who are working in the field of stability theory of differential/difference equations, dynamical systems and control theory. It would also be of use for the graduate and post graduate student who is interested in the theory of dynamical systems and its applications. The reader needs no deep knowledge of special branches of mathematics, although it should be easier for readers who know the fundamentals concepts of the theory of metric spaces, qualitative theory of differential/difference equations and dynamical systems.



Dynamical Systems And Applications


Dynamical Systems And Applications
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: World Scientific
Release Date : 1995

Dynamical Systems And Applications written by Ravi P. Agarwal and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Mathematics categories.


World Scientific series in Applicable Analysis (WSSIAA) aims at reporting new developments of high mathematical standard and current interest. Each volume in the series shall be devoted to the mathematical analysis that has been applied or potentially applicable to the solutions of scientific, engineering, and social problems. For the past twenty five years, there has been an explosion of interest in the study of nonlinear dynamical systems. Mathematical techniques developed during this period have been applied to important nonlinear problems ranging from physics and chemistry to ecology and economics. All these developments have made dynamical systems theory an important and attractive branch of mathematics to scientists in many disciplines. This rich mathematical subject has been partially represented in this collection of 45 papers by some of the leading researchers in the area. This volume contains 45 state-of-art articles on the mathematical theory of dynamical systems by leading researchers. It is hoped that this collection will lead new direction in this field.Contributors: B Abraham-Shrauner, V Afraimovich, N U Ahmed, B Aulbach, E J Avila-Vales, F Battelli, J M Blazquez, L Block, T A Burton, R S Cantrell, C Y Chan, P Collet, R Cushman, M Denker, F N Diacu, Y H Ding, N S A El-Sharif, J E Fornaess, M Frankel, R Galeeva, A Galves, V Gershkovich, M Girardi, L Gotusso, J Graczyk, Y Hino, I Hoveijn, V Hutson, P B Kahn, J Kato, J Keesling, S Keras, V Kolmanovskii, N V Minh, V Mioc, K Mischaikow, M Misiurewicz, J W Mooney, M E Muldoon, S Murakami, M Muraskin, A D Myshkis, F Neuman, J C Newby, Y Nishiura, Z Nitecki, M Ohta, G Osipenko, N Ozalp, M Pollicott, Min Qu, Donal O-Regan, E Romanenko, V Roytburd, L Shaikhet, J Shidawara, N Sibony, W-H Steeb, C Stoica, G Swiatek, T Takaishi, N D Thai Son, R Triggiani, A E Tuma, E H Twizell, M Urbanski; T D Van, A Vanderbauwhede, A Veneziani, G Vickers, X Xiang, T Young, Y Zarmi.