Statistical Analysis Of Financial Data In S Plus

DOWNLOAD
Download Statistical Analysis Of Financial Data In S Plus PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Analysis Of Financial Data In S Plus book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistical Analysis Of Financial Data In S Plus
DOWNLOAD
Author : René Carmona
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-18
Statistical Analysis Of Financial Data In S Plus written by René Carmona and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Business & Economics categories.
This book develops the use of statistical data analysis in finance, and it uses the statistical software environment of S-PLUS as a vehicle for presenting practical implementations from financial engineering. It is divided into three parts. Part I, Exploratory Data Analysis, reviews the most commonly used methods of statistical data exploration. Its originality lies in the introduction of tools for the estimation and simulation of heavy tail distributions and copulas, the computation of measures of risk, and the principal component analysis of yield curves. Part II, Regression, introduces modern regression concepts with an emphasis on robustness and non-parametric techniques. The applications include the term structure of interest rates, the construction of commodity forward curves, and nonparametric alternatives to the Black Scholes option pricing paradigm. Part III, Time Series and State Space Models, is concerned with theories of time series and of state space models. Linear ARIMA models are applied to the analysis of weather derivatives, Kalman filtering is applied to public company earnings prediction, and nonlinear GARCH models and nonlinear filtering are applied to stochastic volatility models. The book is aimed at undergraduate students in financial engineering, master students in finance and MBA's, and to practitioners with financial data analysis concerns.
Statistical Analysis Of Financial Data In S Plus
DOWNLOAD
Author : Carmona
language : en
Publisher:
Release Date : 2009-12-01
Statistical Analysis Of Financial Data In S Plus written by Carmona and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-12-01 with categories.
Modeling Financial Time Series With S Plus
DOWNLOAD
Author : Eric Zivot
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Modeling Financial Time Series With S Plus written by Eric Zivot and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Business & Economics categories.
The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.
Statistical Analysis Of Financial Data In R
DOWNLOAD
Author : René Carmona
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-13
Statistical Analysis Of Financial Data In R written by René Carmona and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-13 with Business & Economics categories.
Although there are many books on mathematical finance, few deal with the statistical aspects of modern data analysis as applied to financial problems. This textbook fills this gap by addressing some of the most challenging issues facing financial engineers. It shows how sophisticated mathematics and modern statistical techniques can be used in the solutions of concrete financial problems. Concerns of risk management are addressed by the study of extreme values, the fitting of distributions with heavy tails, the computation of values at risk (VaR), and other measures of risk. Principal component analysis (PCA), smoothing, and regression techniques are applied to the construction of yield and forward curves. Time series analysis is applied to the study of temperature options and nonparametric estimation. Nonlinear filtering is applied to Monte Carlo simulations, option pricing and earnings prediction. This textbook is intended for undergraduate students majoring in financial engineering, or graduate students in a Master in finance or MBA program. It is sprinkled with practical examples using market data, and each chapter ends with exercises. Practical examples are solved in the R computing environment. They illustrate problems occurring in the commodity, energy and weather markets, as well as the fixed income, equity and credit markets. The examples, experiments and problem sets are based on the library Rsafd developed for the purpose of the text. The book should help quantitative analysts learn and implement advanced statistical concepts. Also, it will be valuable for researchers wishing to gain experience with financial data, implement and test mathematical theories, and address practical issues that are often ignored or underestimated in academic curricula. This is the new, fully-revised edition to the book Statistical Analysis of Financial Data in S-Plus. René Carmona is the Paul M. Wythes '55 Professor of Engineering and Finance at Princeton University in the department of Operations Research and Financial Engineering, and Director of Graduate Studies of the Bendheim Center for Finance. His publications include over one hundred articles and eight books in probability and statistics. He was elected Fellow of the Institute of Mathematical Statistics in 1984, and of the Society for Industrial and Applied Mathematics in 2010. He is on the editorial board of several peer-reviewed journals and book series. Professor Carmona has developed computer programs for teaching statistics and research in signal analysis and financial engineering. He has worked for many years on energy, the commodity markets and more recently in environmental economics, and he is recognized as a leading researcher and expert in these areas.
Statistical Analysis Of Financial Data
DOWNLOAD
Author : James Gentle
language : en
Publisher: CRC Press
Release Date : 2020-03-12
Statistical Analysis Of Financial Data written by James Gentle and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-12 with Business & Economics categories.
Statistical Analysis of Financial Data covers the use of statistical analysis and the methods of data science to model and analyze financial data. The first chapter is an overview of financial markets, describing the market operations and using exploratory data analysis to illustrate the nature of financial data. The software used to obtain the data for the examples in the first chapter and for all computations and to produce the graphs is R. However discussion of R is deferred to an appendix to the first chapter, where the basics of R, especially those most relevant in financial applications, are presented and illustrated. The appendix also describes how to use R to obtain current financial data from the internet. Chapter 2 describes the methods of exploratory data analysis, especially graphical methods, and illustrates them on real financial data. Chapter 3 covers probability distributions useful in financial analysis, especially heavy-tailed distributions, and describes methods of computer simulation of financial data. Chapter 4 covers basic methods of statistical inference, especially the use of linear models in analysis, and Chapter 5 describes methods of time series with special emphasis on models and methods applicable to analysis of financial data. Features * Covers statistical methods for analyzing models appropriate for financial data, especially models with outliers or heavy-tailed distributions. * Describes both the basics of R and advanced techniques useful in financial data analysis. * Driven by real, current financial data, not just stale data deposited on some static website. * Includes a large number of exercises, many requiring the use of open-source software to acquire real financial data from the internet and to analyze it.
Modeling Financial Time Series With S Plus
DOWNLOAD
Author : Eric Zivot
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-09-12
Modeling Financial Time Series With S Plus written by Eric Zivot and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-09-12 with Business & Economics categories.
The field of financial econometrics has exploded since the early 1990s. This book represents an integration of theory, methods and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. It shows the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts.
Analysis Of Financial Time Series
DOWNLOAD
Author : Ruey S. Tsay
language : en
Publisher: John Wiley & Sons
Release Date : 2005-09-15
Analysis Of Financial Time Series written by Ruey S. Tsay and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-09-15 with Business & Economics categories.
Provides statistical tools and techniques needed to understandtoday's financial markets The Second Edition of this critically acclaimed text provides acomprehensive and systematic introduction to financial econometricmodels and their applications in modeling and predicting financialtime series data. This latest edition continues to emphasizeempirical financial data and focuses on real-world examples.Following this approach, readers will master key aspects offinancial time series, including volatility modeling, neuralnetwork applications, market microstructure and high-frequencyfinancial data, continuous-time models and Ito's Lemma, Value atRisk, multiple returns analysis, financial factor models, andeconometric modeling via computation-intensive methods. The author begins with the basic characteristics of financialtime series data, setting the foundation for the three maintopics: Analysis and application of univariate financial timeseries Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text,including the addition of S-Plus® commands and illustrations.Exercises have been thoroughly updated and expanded and include themost current data, providing readers with more opportunities to putthe models and methods into practice. Among the new material addedto the text, readers will find: Consistent covariance estimation under heteroscedasticity andserial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing adeeper understanding of financial markets through firsthandexperience in working with financial data. This is an idealtextbook for MBA students as well as a reference for researchersand professionals in business and finance.
Statistical Analysis Of Financial Data In S Plus
DOWNLOAD
Author : René Carmona
language : en
Publisher: Springer
Release Date : 2013-04-16
Statistical Analysis Of Financial Data In S Plus written by René Carmona and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-16 with Business & Economics categories.
This is the first book at the graduate textbook level to discuss analyzing financial data with S-PLUS. Its originality lies in the introduction of tools for the estimation and simulation of heavy tail distributions and copulas, the computation of measures of risk, and the principal component analysis of yield curves. The book is aimed at undergraduate students in financial engineering; master students in finance and MBA's, and to practitioners with financial data analysis concerns.
Analysis Of Financial Time Series
DOWNLOAD
Author : Ruey S. Tsay
language : en
Publisher: John Wiley & Sons
Release Date : 2010-10-26
Analysis Of Financial Time Series written by Ruey S. Tsay and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-26 with Mathematics categories.
This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
Statistics And Data Analysis For Financial Engineering
DOWNLOAD
Author : David Ruppert
language : en
Publisher: Springer
Release Date : 2015-04-21
Statistics And Data Analysis For Financial Engineering written by David Ruppert and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-21 with Business & Economics categories.
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.