[PDF] Statistical Analysis Of Network Data - eBooks Review

Statistical Analysis Of Network Data


Statistical Analysis Of Network Data
DOWNLOAD

Download Statistical Analysis Of Network Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Analysis Of Network Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical Analysis Of Network Data


Statistical Analysis Of Network Data
DOWNLOAD
Author : Eric D. Kolaczyk
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-20

Statistical Analysis Of Network Data written by Eric D. Kolaczyk and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-20 with Computers categories.


In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.



Statistical Analysis Of Network Data With R


Statistical Analysis Of Network Data With R
DOWNLOAD
Author : Eric D. Kolaczyk
language : en
Publisher: Springer
Release Date : 2014-05-22

Statistical Analysis Of Network Data With R written by Eric D. Kolaczyk and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-22 with Computers categories.


Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).



Probabilistic Foundations Of Statistical Network Analysis


Probabilistic Foundations Of Statistical Network Analysis
DOWNLOAD
Author : Harry Crane
language : en
Publisher: CRC Press
Release Date : 2018-04-17

Probabilistic Foundations Of Statistical Network Analysis written by Harry Crane and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-17 with Business & Economics categories.


Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE.



A Survey Of Statistical Network Models


A Survey Of Statistical Network Models
DOWNLOAD
Author : Anna Goldenberg
language : en
Publisher: Now Publishers Inc
Release Date : 2010

A Survey Of Statistical Network Models written by Anna Goldenberg and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Computers categories.


Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.



The Econometric Analysis Of Network Data


The Econometric Analysis Of Network Data
DOWNLOAD
Author : Bryan Graham
language : en
Publisher: Academic Press
Release Date : 2020-05-20

The Econometric Analysis Of Network Data written by Bryan Graham and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-20 with Business & Economics categories.


The Econometric Analysis of Network Data serves as an entry point for advanced students, researchers, and data scientists seeking to perform effective analyses of networks, especially inference problems. It introduces the key results and ideas in an accessible, yet rigorous way. While a multi-contributor reference, the work is tightly focused and disciplined, providing latitude for varied specialties in one authorial voice.



A User S Guide To Network Analysis In R


A User S Guide To Network Analysis In R
DOWNLOAD
Author : Douglas Luke
language : en
Publisher: Springer
Release Date : 2015-12-14

A User S Guide To Network Analysis In R written by Douglas Luke and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-14 with Mathematics categories.


Presenting a comprehensive resource for the mastery of network analysis in R, the goal of Network Analysis with R is to introduce modern network analysis techniques in R to social, physical, and health scientists. The mathematical foundations of network analysis are emphasized in an accessible way and readers are guided through the basic steps of network studies: network conceptualization, data collection and management, network description, visualization, and building and testing statistical models of networks. As with all of the books in the Use R! series, each chapter contains extensive R code and detailed visualizations of datasets. Appendices will describe the R network packages and the datasets used in the book. An R package developed specifically for the book, available to readers on GitHub, contains relevant code and real-world network datasets as well.



Inferential Network Analysis


Inferential Network Analysis
DOWNLOAD
Author : Skyler J. Cranmer
language : en
Publisher: Cambridge University Press
Release Date : 2020-11-19

Inferential Network Analysis written by Skyler J. Cranmer and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-19 with Business & Economics categories.


Pioneering introduction of unprecedented breadth and scope to inferential and statistical methods for network analysis.



Statistical Techniques For Network Security Modern Statistically Based Intrusion Detection And Protection


Statistical Techniques For Network Security Modern Statistically Based Intrusion Detection And Protection
DOWNLOAD
Author : Wang, Yun
language : en
Publisher: IGI Global
Release Date : 2008-10-31

Statistical Techniques For Network Security Modern Statistically Based Intrusion Detection And Protection written by Wang, Yun and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-31 with Computers categories.


Provides statistical modeling and simulating approaches to address the needs for intrusion detection and protection. Covers topics such as network traffic data, anomaly intrusion detection, and prediction events.



Handbook Of Graphical Models


Handbook Of Graphical Models
DOWNLOAD
Author : Marloes Maathuis
language : en
Publisher: CRC Press
Release Date : 2018-11-12

Handbook Of Graphical Models written by Marloes Maathuis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-12 with Mathematics categories.


A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.