[PDF] Statistical And Machine Learning Approaches For Network Analysis - eBooks Review

Statistical And Machine Learning Approaches For Network Analysis


Statistical And Machine Learning Approaches For Network Analysis
DOWNLOAD

Download Statistical And Machine Learning Approaches For Network Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical And Machine Learning Approaches For Network Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical And Machine Learning Approaches For Network Analysis


Statistical And Machine Learning Approaches For Network Analysis
DOWNLOAD
Author : Matthias Dehmer
language : en
Publisher: John Wiley & Sons
Release Date : 2012-06-26

Statistical And Machine Learning Approaches For Network Analysis written by Matthias Dehmer and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-26 with Mathematics categories.


Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include: A survey of computational approaches to reconstruct and partition biological networks An introduction to complex networks—measures, statistical properties, and models Modeling for evolving biological networks The structure of an evolving random bipartite graph Density-based enumeration in structured data Hyponym extraction employing a weighted graph kernel Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.



Probabilistic Foundations Of Statistical Network Analysis


Probabilistic Foundations Of Statistical Network Analysis
DOWNLOAD
Author : Harry Crane
language : en
Publisher: CRC Press
Release Date : 2018-04-17

Probabilistic Foundations Of Statistical Network Analysis written by Harry Crane and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-17 with Business & Economics categories.


Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE.



Introduction To Statistical And Machine Learning Methods For Data Science


Introduction To Statistical And Machine Learning Methods For Data Science
DOWNLOAD
Author : Carlos Andre Reis Pinheiro
language : en
Publisher: SAS Institute
Release Date : 2021-08-06

Introduction To Statistical And Machine Learning Methods For Data Science written by Carlos Andre Reis Pinheiro and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-06 with Computers categories.


Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.



An Introduction To Statistical Learning


An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30

An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.



Interpretability For Industry 4 0 Statistical And Machine Learning Approaches


Interpretability For Industry 4 0 Statistical And Machine Learning Approaches
DOWNLOAD
Author : Antonio Lepore
language : en
Publisher: Springer Nature
Release Date : 2022-10-19

Interpretability For Industry 4 0 Statistical And Machine Learning Approaches written by Antonio Lepore and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-19 with Mathematics categories.


This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry. Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.



Cybersecurity Data Science


Cybersecurity Data Science
DOWNLOAD
Author : Scott Mongeau
language : en
Publisher: Springer Nature
Release Date : 2021-10-01

Cybersecurity Data Science written by Scott Mongeau and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-01 with Computers categories.


This book encompasses a systematic exploration of Cybersecurity Data Science (CSDS) as an emerging profession, focusing on current versus idealized practice. This book also analyzes challenges facing the emerging CSDS profession, diagnoses key gaps, and prescribes treatments to facilitate advancement. Grounded in the management of information systems (MIS) discipline, insights derive from literature analysis and interviews with 50 global CSDS practitioners. CSDS as a diagnostic process grounded in the scientific method is emphasized throughout Cybersecurity Data Science (CSDS) is a rapidly evolving discipline which applies data science methods to cybersecurity challenges. CSDS reflects the rising interest in applying data-focused statistical, analytical, and machine learning-driven methods to address growing security gaps. This book offers a systematic assessment of the developing domain. Advocacy is provided to strengthen professional rigor and best practices in the emerging CSDS profession. This book will be of interest to a range of professionals associated with cybersecurity and data science, spanning practitioner, commercial, public sector, and academic domains. Best practices framed will be of interest to CSDS practitioners, security professionals, risk management stewards, and institutional stakeholders. Organizational and industry perspectives will be of interest to cybersecurity analysts, managers, planners, strategists, and regulators. Research professionals and academics are presented with a systematic analysis of the CSDS field, including an overview of the state of the art, a structured evaluation of key challenges, recommended best practices, and an extensive bibliography.



Complex Graphs And Networks


Complex Graphs And Networks
DOWNLOAD
Author : Fan R. K. Chung
language : en
Publisher: American Mathematical Soc.
Release Date : 2006

Complex Graphs And Networks written by Fan R. K. Chung and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Computers categories.


Graph theory is a primary tool for detecting numerous hidden structures in various information networks, including Internet graphs, social networks, biological networks, or any graph representing relations in massive data sets. This book explains the universal and ubiquitous coherence in the structure of these realistic but complex networks.



Handbook Of Graphical Models


Handbook Of Graphical Models
DOWNLOAD
Author : Marloes Maathuis
language : en
Publisher: CRC Press
Release Date : 2018-11-12

Handbook Of Graphical Models written by Marloes Maathuis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-12 with Mathematics categories.


A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.



Proceedings Of International Joint Conference On Advances In Computational Intelligence


Proceedings Of International Joint Conference On Advances In Computational Intelligence
DOWNLOAD
Author : Mohammad Shorif Uddin
language : en
Publisher: Springer Nature
Release Date : 2025-07-25

Proceedings Of International Joint Conference On Advances In Computational Intelligence written by Mohammad Shorif Uddin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-25 with Computers categories.


This book gathers outstanding research papers presented at the 8th International Joint Conference on Advances in Computational Intelligence (IJCACI 2024), held in hybrid mode at South Asian University, New Delhi, India, during October 5–6, 2024. IJCACI 2024 is jointly organized by Jahangirnagar University (JU), Bangladesh, and South Asian University (SAU), India. The book presents the novel contributions in areas of computational intelligence, and it serves as a reference material for advance research. The topics covered are collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.



A Survey Of Statistical Network Models


A Survey Of Statistical Network Models
DOWNLOAD
Author : Anna Goldenberg
language : en
Publisher: Now Publishers Inc
Release Date : 2010

A Survey Of Statistical Network Models written by Anna Goldenberg and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Computers categories.


Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.