[PDF] Statistical And Machine Learning Data Mining - eBooks Review

Statistical And Machine Learning Data Mining


Statistical And Machine Learning Data Mining
DOWNLOAD

Download Statistical And Machine Learning Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical And Machine Learning Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical And Machine Learning Data Mining


Statistical And Machine Learning Data Mining
DOWNLOAD
Author : Bruce Ratner
language : en
Publisher: CRC Press
Release Date : 2012-02-28

Statistical And Machine Learning Data Mining written by Bruce Ratner and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-28 with Business & Economics categories.


The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.



The Elements Of Statistical Learning


The Elements Of Statistical Learning
DOWNLOAD
Author : Trevor Hastie
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11

The Elements Of Statistical Learning written by Trevor Hastie and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.


During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates.



Principles And Theory For Data Mining And Machine Learning


Principles And Theory For Data Mining And Machine Learning
DOWNLOAD
Author : Bertrand Clarke
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-07-21

Principles And Theory For Data Mining And Machine Learning written by Bertrand Clarke and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-07-21 with Computers categories.


Extensive treatment of the most up-to-date topics Provides the theory and concepts behind popular and emerging methods Range of topics drawn from Statistics, Computer Science, and Electrical Engineering



Statistical Machine Learning


Statistical Machine Learning
DOWNLOAD
Author : Richard Golden
language : en
Publisher: CRC Press
Release Date : 2020-06-24

Statistical Machine Learning written by Richard Golden and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-24 with Computers categories.


The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.



Encyclopedia Of Machine Learning


Encyclopedia Of Machine Learning
DOWNLOAD
Author : Claude Sammut
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-03-28

Encyclopedia Of Machine Learning written by Claude Sammut and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-28 with Computers categories.


This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.



The Elements Of Statistical Learning


The Elements Of Statistical Learning
DOWNLOAD
Author : Trevor Hastie
language : en
Publisher:
Release Date : 2009

The Elements Of Statistical Learning written by Trevor Hastie and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Biology categories.




Choosing Chinese Universities


Choosing Chinese Universities
DOWNLOAD
Author : Alice Y.C. Te
language : en
Publisher: Routledge
Release Date : 2022-10-07

Choosing Chinese Universities written by Alice Y.C. Te and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-07 with Education categories.


This book unpacks the complex dynamics of Hong Kong students’ choice in pursuing undergraduate education at the universities of Mainland China. Drawing on an empirical study based on interviews with 51 students, this book investigates how macro political/economic factors, institutional influences, parental influence, and students’ personal motivations have shaped students’ eventual choice of university. Building on Perna’s integrated model of college choice and Lee’s push-pull mobility model, this book conceptualizes that students’ border crossing from Hong Kong to Mainland China for higher education is a trans-contextualized negotiated choice under the "One Country, Two Systems" principle. The findings reveal that during the decision-making process, influencing factors have conditioned four archetypes of student choice: Pragmatists, Achievers, Averages, and Underachievers. The book closes by proposing an enhanced integrated model of college choice that encompasses both rational motives and sociological factors, and examines the theoretical significance and practical implications of the qualitative study. With its focus on student choice and experiences of studying in China, this book’s research and policy findings will interest researchers, university administrators, school principals, and teachers.



Introduction To Statistical And Machine Learning Methods For Data Science


Introduction To Statistical And Machine Learning Methods For Data Science
DOWNLOAD
Author : Carlos Andre Reis Pinheiro
language : en
Publisher: SAS Institute
Release Date : 2021-08-06

Introduction To Statistical And Machine Learning Methods For Data Science written by Carlos Andre Reis Pinheiro and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-06 with Computers categories.


Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.



Statistical And Machine Learning Data Mining


Statistical And Machine Learning Data Mining
DOWNLOAD
Author : Bruce Ratner
language : en
Publisher:
Release Date : 2012

Statistical And Machine Learning Data Mining written by Bruce Ratner and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Data mining categories.


The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has.



The Elements Of Statistical Learning


The Elements Of Statistical Learning
DOWNLOAD
Author : Trevor Hastie
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-08-26

The Elements Of Statistical Learning written by Trevor Hastie and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-08-26 with Computers categories.


This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates.