[PDF] Statistical Computing With R - eBooks Review

Statistical Computing With R


Statistical Computing With R
DOWNLOAD

Download Statistical Computing With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Computing With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical Computing With R


Statistical Computing With R
DOWNLOAD
Author : Maria L. Rizzo
language : en
Publisher: CRC Press
Release Date : 2007-11-15

Statistical Computing With R written by Maria L. Rizzo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-15 with Reference categories.


Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditiona



Statistical Computing With R


Statistical Computing With R
DOWNLOAD
Author : Maria L. Rizzo
language : en
Publisher: CRC Press
Release Date : 2007-11-15

Statistical Computing With R written by Maria L. Rizzo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-15 with Mathematics categories.


Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.



Statistical Computing With R


Statistical Computing With R
DOWNLOAD
Author : Maria L. Rizzo
language : en
Publisher: CRC Press
Release Date : 2007-11-15

Statistical Computing With R written by Maria L. Rizzo and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-15 with Reference categories.


Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditiona



Statistical Computing In C And R


Statistical Computing In C And R
DOWNLOAD
Author : Randall L. Eubank
language : en
Publisher: CRC Press
Release Date : 2011-12-01

Statistical Computing In C And R written by Randall L. Eubank and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-01 with Mathematics categories.


With the advancement of statistical methodology inextricably linked to the use of computers, new methodological ideas must be translated into usable code and then numerically evaluated relative to competing procedures. In response to this, Statistical Computing in C++ and R concentrates on the writing of code rather than the development and study of numerical algorithms per se. The book discusses code development in C++ and R and the use of these symbiotic languages in unison. It emphasizes that each offers distinct features that, when used in tandem, can take code writing beyond what can be obtained from either language alone. The text begins with some basics of object-oriented languages, followed by a "boot-camp" on the use of C++ and R. The authors then discuss code development for the solution of specific computational problems that are relevant to statistics including optimization, numerical linear algebra, and random number generation. Later chapters introduce abstract data structures (ADTs) and parallel computing concepts. The appendices cover R and UNIX Shell programming. Features Includes numerous student exercises ranging from elementary to challenging Integrates both C++ and R for the solution of statistical computing problems Uses C++ code in R and R functions in C++ programs Provides downloadable programs, available from the authors’ website The translation of a mathematical problem into its computational analog (or analogs) is a skill that must be learned, like any other, by actively solving relevant problems. The text reveals the basic principles of algorithmic thinking essential to the modern statistician as well as the fundamental skill of communicating with a computer through the use of the computer languages C++ and R. The book lays the foundation for original code development in a research environment.



Learning Rstudio For R Statistical Computing


Learning Rstudio For R Statistical Computing
DOWNLOAD
Author : Mark P. J. Van der Loo
language : en
Publisher: Packt Publishing Ltd
Release Date : 2012-01-01

Learning Rstudio For R Statistical Computing written by Mark P. J. Van der Loo and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-01 with Computers categories.


A practical tutorial covering how to leverage RStudio functionality to effectively perform R Development, analysis, and reporting with RStudio. The book is aimed at R developers and analysts who wish to do R statistical development while taking advantage of RStudio functionality to ease their development efforts. Familiarity with R is assumed. Those who want to get started with R development using RStudio will also find the book useful. Even if you already use R but want to create reproducible statistical analysis projects or extend R with self-written packages, this book shows how to quickly achieve this using RStudio.



The R Software


The R Software
DOWNLOAD
Author : Pierre Lafaye de Micheaux
language : en
Publisher: Springer Science & Business
Release Date : 2014-05-13

The R Software written by Pierre Lafaye de Micheaux and has been published by Springer Science & Business this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-13 with Computers categories.


The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.



R By Example


R By Example
DOWNLOAD
Author : Jim Albert
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-28

R By Example written by Jim Albert and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-28 with Mathematics categories.


R by Example is an example-based introduction to the statistical computing environment that does not assume any previous familiarity with R or other software packages. R functions are presented in the context of interesting applications with real data. The purpose of this book is to illustrate a range of statistical and probability computations using R for people who are learning, teaching, or using statistics. Specifically, this book is written for users who have covered at least the equivalent of (or are currently studying) undergraduate level calculus-based courses in statistics. These users are learning or applying exploratory and inferential methods for analyzing data and this book is intended to be a useful resource for learning how to implement these procedures in R.



Computational Statistics


Computational Statistics
DOWNLOAD
Author :
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-04-29

Computational Statistics written by and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-29 with Mathematics categories.


Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.



Introductory Statistics With R


Introductory Statistics With R
DOWNLOAD
Author : Peter Dalgaard
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-06-27

Introductory Statistics With R written by Peter Dalgaard and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-27 with Mathematics categories.


This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.