[PDF] Statistical Data Analysis And Entropy - eBooks Review

Statistical Data Analysis And Entropy


Statistical Data Analysis And Entropy
DOWNLOAD

Download Statistical Data Analysis And Entropy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical Data Analysis And Entropy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Statistical Data Analysis And Entropy


Statistical Data Analysis And Entropy
DOWNLOAD
Author : Nobuoki Eshima
language : en
Publisher: Springer Nature
Release Date : 2020-01-21

Statistical Data Analysis And Entropy written by Nobuoki Eshima and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-21 with Mathematics categories.


This book reconsiders statistical methods from the point of view of entropy, and introduces entropy-based approaches for data analysis. Further, it interprets basic statistical methods, such as the chi-square statistic, t-statistic, F-statistic and the maximum likelihood estimation in the context of entropy. In terms of categorical data analysis, the book discusses the entropy correlation coefficient (ECC) and the entropy coefficient of determination (ECD) for measuring association and/or predictive powers in association models, and generalized linear models (GLMs). Through association and GLM frameworks, it also describes ECC and ECD in correlation and regression analyses for continuous random variables. In multivariate statistical analysis, canonical correlation analysis, T2-statistic, and discriminant analysis are discussed in terms of entropy. Moreover, the book explores the efficiency of test procedures in statistical tests of hypotheses using entropy. Lastly, it presents an entropy-based path analysis for structural GLMs, which is applied in factor analysis and latent structure models. Entropy is an important concept for dealing with the uncertainty of systems of random variables and can be applied in statistical methodologies. This book motivates readers, especially young researchers, to address the challenge of new approaches to statistical data analysis and behavior-metric studies.



Statistical Data Analytics


Statistical Data Analytics
DOWNLOAD
Author : Walter W. Piegorsch
language : en
Publisher: John Wiley & Sons
Release Date : 2015-06-11

Statistical Data Analytics written by Walter W. Piegorsch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-11 with Mathematics categories.


A comprehensive introduction to statistical methods for data mining and knowledge discovery. Applications of data mining and ‘big data’ increasingly take center stage in our modern, knowledge-driven society, supported by advances in computing power, automated data acquisition, social media development and interactive, linkable internet software. This book presents a coherent, technical introduction to modern statistical learning and analytics, starting from the core foundations of statistics and probability. It includes an overview of probability and statistical distributions, basics of data manipulation and visualization, and the central components of standard statistical inferences. The majority of the text extends beyond these introductory topics, however, to supervised learning in linear regression, generalized linear models, and classification analytics. Finally, unsupervised learning via dimension reduction, cluster analysis, and market basket analysis are introduced. Extensive examples using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others. Statistical Data Analytics: Focuses on methods critically used in data mining and statistical informatics. Coherently describes the methods at an introductory level, with extensions to selected intermediate and advanced techniques. Provides informative, technical details for the highlighted methods. Employs the open-source R language as the computational vehicle – along with its burgeoning collection of online packages – to illustrate many of the analyses contained in the book. Concludes each chapter with a range of interesting and challenging homework exercises using actual data from a variety of informatic application areas. This book will appeal as a classroom or training text to intermediate and advanced undergraduates, and to beginning graduate students, with sufficient background in calculus and matrix algebra. It will also serve as a source-book on the foundations of statistical informatics and data analytics to practitioners who regularly apply statistical learning to their modern data.



Statistical Data Analysis And Inference


Statistical Data Analysis And Inference
DOWNLOAD
Author : Y. Dodge
language : en
Publisher: Elsevier
Release Date : 2014-05-23

Statistical Data Analysis And Inference written by Y. Dodge and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-23 with Mathematics categories.


A wide range of topics and perspectives in the field of statistics are brought together in this volume. The contributions originate from invited papers presented at an international conference which was held in honour of C. Radhakrishna Rao, one of the most eminent statisticians of our time and a distinguished scientist.



Entropy Large Deviations And Statistical Mechanics


Entropy Large Deviations And Statistical Mechanics
DOWNLOAD
Author : Richard.S. Ellis
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Entropy Large Deviations And Statistical Mechanics written by Richard.S. Ellis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.


This book has two main topics: large deviations and equilibrium statistical mechanics. I hope to convince the reader that these topics have many points of contact and that in being treated together, they enrich each other. Entropy, in its various guises, is their common core. The large deviation theory which is developed in this book focuses upon convergence properties of certain stochastic systems. An elementary example is the weak law of large numbers. For each positive e, P{ISn/nl 2: e} con verges to zero as n --+ 00, where Sn is the nth partial sum of indepen dent identically distributed random variables with zero mean. Large deviation theory shows that if the random variables are exponentially bounded, then the probabilities converge to zero exponentially fast as n --+ 00. The exponen tial decay allows one to prove the stronger property of almost sure conver gence (Sn/n --+ 0 a.s.). This example will be generalized extensively in the book. We will treat a large class of stochastic systems which involve both indepen dent and dependent random variables and which have the following features: probabilities converge to zero exponentially fast as the size of the system increases; the exponential decay leads to strong convergence properties of the system. The most fascinating aspect of the theory is that the exponential decay rates are computable in terms of entropy functions. This identification between entropy and decay rates of large deviation probabilities enhances the theory significantly.



An Introduction To Latent Class Analysis


An Introduction To Latent Class Analysis
DOWNLOAD
Author : Nobuoki Eshima
language : en
Publisher: Springer Nature
Release Date : 2022-04-09

An Introduction To Latent Class Analysis written by Nobuoki Eshima and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-09 with Business & Economics categories.


This book provides methods and applications of latent class analysis, and the following topics are taken up in the focus of discussion: basic latent structure models in a framework of generalized linear models, exploratory latent class analysis, latent class analysis with ordered latent classes, a latent class model approach for analyzing learning structures, the latent Markov analysis for longitudinal data, and path analysis with latent class models. The maximum likelihood estimation procedures for latent class models are constructed via the expectation–maximization (EM) algorithm, and along with it, latent profile and latent trait models are also treated. Entropy-based discussions for latent class models are given as advanced approaches, for example, comparison of latent classes in a latent class cluster model, assessing latent class models, path analysis, and so on. In observing human behaviors and responses to various stimuli and test items, it is valid to assume they are dominated by certain factors. This book plays a significant role in introducing latent structure analysis to not only young researchers and students studying behavioral sciences, but also to those investigating other fields of scientific research.



Bayesian Logical Data Analysis For The Physical Sciences


Bayesian Logical Data Analysis For The Physical Sciences
DOWNLOAD
Author : Phil Gregory
language : en
Publisher: Cambridge University Press
Release Date : 2005-04-14

Bayesian Logical Data Analysis For The Physical Sciences written by Phil Gregory and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-04-14 with Mathematics categories.


Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica® notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125.



Entropy Measures For Environmental Data


Entropy Measures For Environmental Data
DOWNLOAD
Author : Linda Altieri
language : en
Publisher: Springer Nature
Release Date : 2024-07-15

Entropy Measures For Environmental Data written by Linda Altieri and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-15 with Science categories.


This book shows how to successfully adapt entropy measures to the complexity of environmental data. It also provides a unified framework that covers all main entropy and spatial entropy measures in the literature, with suggestions for their potential use in the analysis of environmental data such as biodiversity, land use and other phenomena occurring over space or time, or both. First, recent literature reviews about including spatial information in traditional entropy measures are presented, highlighting the advantages and disadvantages of past approaches and the difference in interpretation of their proposals. A consistent notation applicable to all approaches is introduced, and the authors’ own proposal is presented. Second, the use of entropy in spatial sampling is focused on, and a method with an outstanding performance when data show a negative or complex spatial correlation is proposed. The last part of the book covers estimating entropy and proposes a model-based approach that differs from all existing estimators, working with data presenting any departure from independence: presence of covariates, temporal or spatial correlation, or both. The theoretical parts are supported by environmental examples covering point data about biodiversity and lattice data about land use. Moreover, a practical section is provided for all parts of the book; in particular, the R package SpatEntropy covers not only the authors’ novel proposals, but also all the main entropy and spatial entropy indices available in the literature. R codes are supplemented to reproduce all the examples. This book is a valuable resource for students and researchers in applied sciences where the use of entropy measures is of interest and where data present dependence on space, time or covariates, such as geography, ecology, biology and landscape analysis.



Statistical Methods For Imbalanced Data In Ecological And Biological Studies


Statistical Methods For Imbalanced Data In Ecological And Biological Studies
DOWNLOAD
Author : Osamu Komori
language : en
Publisher: Springer
Release Date : 2019-07-02

Statistical Methods For Imbalanced Data In Ecological And Biological Studies written by Osamu Komori and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-02 with Medical categories.


This book presents a fresh, new approach in that it provides a comprehensive recent review of challenging problems caused by imbalanced data in prediction and classification, and also in that it introduces several of the latest statistical methods of dealing with these problems. The book discusses the property of the imbalance of data from two points of view. The first is quantitative imbalance, meaning that the sample size in one population highly outnumbers that in another population. It includes presence-only data as an extreme case, where the presence of a species is confirmed, whereas the information on its absence is uncertain, which is especially common in ecology in predicting habitat distribution. The second is qualitative imbalance, meaning that the data distribution of one population can be well specified whereas that of the other one shows a highly heterogeneous property. A typical case is the existence of outliers commonly observed in gene expression data, and another is heterogeneous characteristics often observed in a case group in case-control studies. The extension of the logistic regression model, maxent, and AdaBoost for imbalanced data is discussed, providing a new framework for improvement of prediction, classification, and performance of variable selection. Weights functions introduced in the methods play an important role in alleviating the imbalance of data. This book also furnishes a new perspective on these problem and shows some applications of the recently developed statistical methods to real data sets.



Applied Statistical Modeling And Data Analytics


Applied Statistical Modeling And Data Analytics
DOWNLOAD
Author : Srikanta Mishra
language : en
Publisher: Elsevier
Release Date : 2017-10-27

Applied Statistical Modeling And Data Analytics written by Srikanta Mishra and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-27 with Science categories.


Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications



Statistical Mechanics


Statistical Mechanics
DOWNLOAD
Author : James Sethna
language : en
Publisher: OUP Oxford
Release Date : 2006-04-07

Statistical Mechanics written by James Sethna and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-07 with Science categories.


In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.